{"title":"A 59.6fsrms Jitter Sub-Sampling PLL With Foreground Open-Loop Gain Calibration","authors":"Yu-Chi Yen;Shen-Iuan Liu","doi":"10.1109/TCSII.2024.3485011","DOIUrl":null,"url":null,"abstract":"A sub-sampling phase-locked loop (SSPLL) with foreground open-loop gain calibration is presented. By digitally adjusting the transconductance cell, the open-loop gain of the SSPLL is calibrated. This SSPLL is fabricated in 40 nm CMOS technology. Its active area is \n<inline-formula> <tex-math>$0.167~{\\mathrm { mm}}^{2}$ </tex-math></inline-formula>\n and the power consumption is 14.08mW at 6.4 GHz for a supply of 1V. The root-mean-square (RMS) jitter is 59.6fs while the phase noise is integrated with the offset frequency from 1 kHz to 100MHz. The calculated figure of merit is −253dB. With the calibration, the maximal deviation of the loop bandwidth is reduced from −41.5% to −7.3% for the supply voltage of 0.9V~1.1V. The maximal deviation of the RMS jitter is reduced from 23.6% to 4.7%. For five chips, the maximal deviation of the loop bandwidth is reduced from −34.9% to 4% with calibration. And the maximal deviation of the RMS jitter is reduced from 10.9% to −3.4%.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 1","pages":"73-77"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10730784/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A sub-sampling phase-locked loop (SSPLL) with foreground open-loop gain calibration is presented. By digitally adjusting the transconductance cell, the open-loop gain of the SSPLL is calibrated. This SSPLL is fabricated in 40 nm CMOS technology. Its active area is
$0.167~{\mathrm { mm}}^{2}$
and the power consumption is 14.08mW at 6.4 GHz for a supply of 1V. The root-mean-square (RMS) jitter is 59.6fs while the phase noise is integrated with the offset frequency from 1 kHz to 100MHz. The calculated figure of merit is −253dB. With the calibration, the maximal deviation of the loop bandwidth is reduced from −41.5% to −7.3% for the supply voltage of 0.9V~1.1V. The maximal deviation of the RMS jitter is reduced from 23.6% to 4.7%. For five chips, the maximal deviation of the loop bandwidth is reduced from −34.9% to 4% with calibration. And the maximal deviation of the RMS jitter is reduced from 10.9% to −3.4%.
期刊介绍:
TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes:
Circuits: Analog, Digital and Mixed Signal Circuits and Systems
Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic
Circuits and Systems, Power Electronics and Systems
Software for Analog-and-Logic Circuits and Systems
Control aspects of Circuits and Systems.