{"title":"High-Quality PEI/Ag/PEI-Zn Semitransparent Electrode for Efficient ITO-Free Flexible Organic Solar Cells and Perovskite Solar Cells","authors":"Hong Lu;Lin Xu;Zihao Wei;Zhanzheng Wang;Keqiang Li;Hanqing Zhang;Changle Yi;Huanran Sun;Juan Wang;Fei Chen;Hainam Do;Jiang Huang","doi":"10.1109/JPHOTOV.2024.3483257","DOIUrl":null,"url":null,"abstract":"To achieve significant advancements in flexible organic and perovskite solar cells, it is imperative to develop a flexible semitransparent electrode that possesses higher light transmittance, lower square resistance, and a flexible bending quality. In this research, we propose a high-quality flexible polyethyleneimine (PEI)/Ag/PEI-Zn electrode on common polyethylene naphthalate (PEN), polyethylene terephthalate (PET), and Polydimethylsiloxane (PDMS) flexible substrates to enhance the transmittance of conventional Ag ultrathin film electrodes in the visible wavelength range. The power conversion efficiency (PCE) of flexible OSC devices based on Poly[(2,6-(4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo [1,2-b:4,5-b']dithiophene)-co-(1,3-di(5-thienyl)-5,7-bis(2-ethylhex yl)benzo[1,2-c:4,5-c']dithiophene-4,8-dione)] (PBDB-T-SF): IT-4F active layer achieves an optimal performance by annealing the PEI-Zn layer at 130 °C through chelating Zn ions with PEI. The PEI-Zn layer serves as a high-quality electron transporting property and surface modifying layer on Ag film. Also, the PEI/Ag/PEI-Zn electrode exhibited remarkable mechanical durability of flexible organic solar cells (FOSCs) compared with indium tin oxiden (ITO)-based devices in consecutive bending experiments. PEI/Ag/PEI-Zn electrode was also applied in flexible perovskite solar cells. Their PCE performance reaches as high as 19.24% and also maintains 73% of its initial value after 500 bending cycles, which is much better than ITO-based flexible devices. Above all, both enhancement in light transmittance and PCE performance of both FOSCs and FPSCs underscores the superior properties of PEI/Ag/PEI-Zn flexible electrodes.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"15 1","pages":"46-53"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10750454/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
To achieve significant advancements in flexible organic and perovskite solar cells, it is imperative to develop a flexible semitransparent electrode that possesses higher light transmittance, lower square resistance, and a flexible bending quality. In this research, we propose a high-quality flexible polyethyleneimine (PEI)/Ag/PEI-Zn electrode on common polyethylene naphthalate (PEN), polyethylene terephthalate (PET), and Polydimethylsiloxane (PDMS) flexible substrates to enhance the transmittance of conventional Ag ultrathin film electrodes in the visible wavelength range. The power conversion efficiency (PCE) of flexible OSC devices based on Poly[(2,6-(4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo [1,2-b:4,5-b']dithiophene)-co-(1,3-di(5-thienyl)-5,7-bis(2-ethylhex yl)benzo[1,2-c:4,5-c']dithiophene-4,8-dione)] (PBDB-T-SF): IT-4F active layer achieves an optimal performance by annealing the PEI-Zn layer at 130 °C through chelating Zn ions with PEI. The PEI-Zn layer serves as a high-quality electron transporting property and surface modifying layer on Ag film. Also, the PEI/Ag/PEI-Zn electrode exhibited remarkable mechanical durability of flexible organic solar cells (FOSCs) compared with indium tin oxiden (ITO)-based devices in consecutive bending experiments. PEI/Ag/PEI-Zn electrode was also applied in flexible perovskite solar cells. Their PCE performance reaches as high as 19.24% and also maintains 73% of its initial value after 500 bending cycles, which is much better than ITO-based flexible devices. Above all, both enhancement in light transmittance and PCE performance of both FOSCs and FPSCs underscores the superior properties of PEI/Ag/PEI-Zn flexible electrodes.
期刊介绍:
The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.