{"title":"Experimental Evaluation of Silicon Nitride Memristors as Coupling Elements for Chimera States in Chaotic Oscillator Networks","authors":"Karolos-Alexandros Tsakalos;Vasileios Ntinas;Nikolaos Vasileiadis;Astero Provata;Panagiotis Dimitrakis;Georgios Ch. Sirakoulis","doi":"10.1109/TCSII.2024.3466963","DOIUrl":null,"url":null,"abstract":"Chimera states have attracted significant research interest due to their potential in modeling brain network functionality. Memristive nano-crossbars, known for their energy efficiency, massive parallelism, and synaptic-like properties, serve as a promising coupling medium in brain-inspired applications. The operation of these devices is strongly dictated by the non-linear mechanisms of memristor devices when studying synchronization phenomena. Expanding upon our previous work, which explored sneak-path currents in Chimera states, this study investigates the impact of fabricated Silicon Nitride (SiN) devices on the dynamics of Chua circuit (CC) networks. We conducted experimental evaluations to confirm the ability of SiN devices to retain their resistance state, thereby ensuring consistency in the crossbar array, a critical factor in maintaining chimera states during experiments. We employed an exponential memristor model to further investigate the non-linear dynamics within the CC network. Our results not only confirm the formation of various synchronization structures, such as chimera states and full chaotic synchronization but also reveal the intriguing formation of phase-lag structures. These structures, induced by the SiN-fitted model, exhibit distinctive characteristics marked by subtle and non-linear coupling behaviors, particularly evident at near-zero voltages. After analyzing our results, we present a comprehensive phase-parametric regime map, obtained by varying the coupling strength bifurcation parameter. This map provides valuable insights into the mechanisms governing the dynamics of CC networks equipepd with SiN-based memristor nanodevices, which have proven capable of capturing the complex dynamics of chimera states.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 1","pages":"33-37"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10690178/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Chimera states have attracted significant research interest due to their potential in modeling brain network functionality. Memristive nano-crossbars, known for their energy efficiency, massive parallelism, and synaptic-like properties, serve as a promising coupling medium in brain-inspired applications. The operation of these devices is strongly dictated by the non-linear mechanisms of memristor devices when studying synchronization phenomena. Expanding upon our previous work, which explored sneak-path currents in Chimera states, this study investigates the impact of fabricated Silicon Nitride (SiN) devices on the dynamics of Chua circuit (CC) networks. We conducted experimental evaluations to confirm the ability of SiN devices to retain their resistance state, thereby ensuring consistency in the crossbar array, a critical factor in maintaining chimera states during experiments. We employed an exponential memristor model to further investigate the non-linear dynamics within the CC network. Our results not only confirm the formation of various synchronization structures, such as chimera states and full chaotic synchronization but also reveal the intriguing formation of phase-lag structures. These structures, induced by the SiN-fitted model, exhibit distinctive characteristics marked by subtle and non-linear coupling behaviors, particularly evident at near-zero voltages. After analyzing our results, we present a comprehensive phase-parametric regime map, obtained by varying the coupling strength bifurcation parameter. This map provides valuable insights into the mechanisms governing the dynamics of CC networks equipepd with SiN-based memristor nanodevices, which have proven capable of capturing the complex dynamics of chimera states.
期刊介绍:
TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes:
Circuits: Analog, Digital and Mixed Signal Circuits and Systems
Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic
Circuits and Systems, Power Electronics and Systems
Software for Analog-and-Logic Circuits and Systems
Control aspects of Circuits and Systems.