Experimental Evaluation of Silicon Nitride Memristors as Coupling Elements for Chimera States in Chaotic Oscillator Networks

IF 4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Circuits and Systems II: Express Briefs Pub Date : 2024-09-24 DOI:10.1109/TCSII.2024.3466963
Karolos-Alexandros Tsakalos;Vasileios Ntinas;Nikolaos Vasileiadis;Astero Provata;Panagiotis Dimitrakis;Georgios Ch. Sirakoulis
{"title":"Experimental Evaluation of Silicon Nitride Memristors as Coupling Elements for Chimera States in Chaotic Oscillator Networks","authors":"Karolos-Alexandros Tsakalos;Vasileios Ntinas;Nikolaos Vasileiadis;Astero Provata;Panagiotis Dimitrakis;Georgios Ch. Sirakoulis","doi":"10.1109/TCSII.2024.3466963","DOIUrl":null,"url":null,"abstract":"Chimera states have attracted significant research interest due to their potential in modeling brain network functionality. Memristive nano-crossbars, known for their energy efficiency, massive parallelism, and synaptic-like properties, serve as a promising coupling medium in brain-inspired applications. The operation of these devices is strongly dictated by the non-linear mechanisms of memristor devices when studying synchronization phenomena. Expanding upon our previous work, which explored sneak-path currents in Chimera states, this study investigates the impact of fabricated Silicon Nitride (SiN) devices on the dynamics of Chua circuit (CC) networks. We conducted experimental evaluations to confirm the ability of SiN devices to retain their resistance state, thereby ensuring consistency in the crossbar array, a critical factor in maintaining chimera states during experiments. We employed an exponential memristor model to further investigate the non-linear dynamics within the CC network. Our results not only confirm the formation of various synchronization structures, such as chimera states and full chaotic synchronization but also reveal the intriguing formation of phase-lag structures. These structures, induced by the SiN-fitted model, exhibit distinctive characteristics marked by subtle and non-linear coupling behaviors, particularly evident at near-zero voltages. After analyzing our results, we present a comprehensive phase-parametric regime map, obtained by varying the coupling strength bifurcation parameter. This map provides valuable insights into the mechanisms governing the dynamics of CC networks equipepd with SiN-based memristor nanodevices, which have proven capable of capturing the complex dynamics of chimera states.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 1","pages":"33-37"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10690178/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Chimera states have attracted significant research interest due to their potential in modeling brain network functionality. Memristive nano-crossbars, known for their energy efficiency, massive parallelism, and synaptic-like properties, serve as a promising coupling medium in brain-inspired applications. The operation of these devices is strongly dictated by the non-linear mechanisms of memristor devices when studying synchronization phenomena. Expanding upon our previous work, which explored sneak-path currents in Chimera states, this study investigates the impact of fabricated Silicon Nitride (SiN) devices on the dynamics of Chua circuit (CC) networks. We conducted experimental evaluations to confirm the ability of SiN devices to retain their resistance state, thereby ensuring consistency in the crossbar array, a critical factor in maintaining chimera states during experiments. We employed an exponential memristor model to further investigate the non-linear dynamics within the CC network. Our results not only confirm the formation of various synchronization structures, such as chimera states and full chaotic synchronization but also reveal the intriguing formation of phase-lag structures. These structures, induced by the SiN-fitted model, exhibit distinctive characteristics marked by subtle and non-linear coupling behaviors, particularly evident at near-zero voltages. After analyzing our results, we present a comprehensive phase-parametric regime map, obtained by varying the coupling strength bifurcation parameter. This map provides valuable insights into the mechanisms governing the dynamics of CC networks equipepd with SiN-based memristor nanodevices, which have proven capable of capturing the complex dynamics of chimera states.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Circuits and Systems II: Express Briefs
IEEE Transactions on Circuits and Systems II: Express Briefs 工程技术-工程:电子与电气
CiteScore
7.90
自引率
20.50%
发文量
883
审稿时长
3.0 months
期刊介绍: TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: Circuits: Analog, Digital and Mixed Signal Circuits and Systems Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic Circuits and Systems, Power Electronics and Systems Software for Analog-and-Logic Circuits and Systems Control aspects of Circuits and Systems.
期刊最新文献
2024 Index IEEE Transactions on Circuits and Systems II: Express Briefs Vol. 71 Table of Contents IEEE Transactions on Circuits and Systems--II: Express Briefs Publication Information IEEE Circuits and Systems Society Information A Dual Power Mode Q/V-Band SiGe HBT Cascode Power Amplifier With a Novel Reconfigurable Four-Way Wilkinson Power Combiner Balun
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1