{"title":"An Area-Efficient CMOS Cross-Coupled LC-VCO Using Nested Intertwined Tail Inductors","authors":"Hyogyoung An;Hyeonjun Nam;Sungjin Kim;Younghyun Lim;Heein Yoon","doi":"10.1109/TCSII.2024.3485921","DOIUrl":null,"url":null,"abstract":"An area-efficient CMOS cross-coupled LC-VCO, operating from 5.74 GHz to 8.02 GHz and featuring a tail noise filter with two tail inductors integrated inside the main inductor, is presented for the first time. The tail noise filter comprised two nested intertwined tail inductors (NITIs) and a tail capacitor bank, effectively suppressing phase noise (PN) while generating negligible magnetic couplings between the main inductor and the NITIs. The proposed architecture enables area-efficient CMOS cross-coupled design, even with the two NITIs, but has no performance degradation, i.e., it eliminates the additional area for the tail noise filter. Implemented in 28-nm CMOS process, it consumed 11 mA current from 0.73 V power supply. The LC-VCO achieved PN of −116.38 dBc/Hz at 1 MHz offset frequency for an output frequency of 5.747 GHz. 37% and 27% reductions in silicon area were achieved, over the conventional LC-VCO and an LC-VCO using intertwined tail inductors (ITIs), respectively, without compromising on performance. The proposed design has the smallest area among state-of-the-art LC-VCOs that include a tail noise filter along with competitive PN and frequency tuning range (FTR).","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 1","pages":"143-147"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10734350/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
An area-efficient CMOS cross-coupled LC-VCO, operating from 5.74 GHz to 8.02 GHz and featuring a tail noise filter with two tail inductors integrated inside the main inductor, is presented for the first time. The tail noise filter comprised two nested intertwined tail inductors (NITIs) and a tail capacitor bank, effectively suppressing phase noise (PN) while generating negligible magnetic couplings between the main inductor and the NITIs. The proposed architecture enables area-efficient CMOS cross-coupled design, even with the two NITIs, but has no performance degradation, i.e., it eliminates the additional area for the tail noise filter. Implemented in 28-nm CMOS process, it consumed 11 mA current from 0.73 V power supply. The LC-VCO achieved PN of −116.38 dBc/Hz at 1 MHz offset frequency for an output frequency of 5.747 GHz. 37% and 27% reductions in silicon area were achieved, over the conventional LC-VCO and an LC-VCO using intertwined tail inductors (ITIs), respectively, without compromising on performance. The proposed design has the smallest area among state-of-the-art LC-VCOs that include a tail noise filter along with competitive PN and frequency tuning range (FTR).
期刊介绍:
TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes:
Circuits: Analog, Digital and Mixed Signal Circuits and Systems
Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic
Circuits and Systems, Power Electronics and Systems
Software for Analog-and-Logic Circuits and Systems
Control aspects of Circuits and Systems.