Status of the Cryogenic Anti-Coincidence Detector (CryoAC) for the Athena X-Ray Integral Field Unit (X-IFU)

IF 1.7 3区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Applied Superconductivity Pub Date : 2024-12-16 DOI:10.1109/TASC.2024.3518459
Lorenzo Ferrari Barusso;Edvige Celasco;Matteo De Gerone;Flavio Gatti;Daniele Grosso;Kifayat Niazi;Manuela Rigano;Adriano Bevilacqua;Luigi Parodi;Fabio Siccardi;Matteo D'Andrea;Simone Lotti;Claudio Macculi;Luigi Piro;Andrea Argan;Gabriele Minervini;Guido Torrioli;Daniele Brienza;Elisabetta Cavazzuti;Angela Volpe
{"title":"Status of the Cryogenic Anti-Coincidence Detector (CryoAC) for the Athena X-Ray Integral Field Unit (X-IFU)","authors":"Lorenzo Ferrari Barusso;Edvige Celasco;Matteo De Gerone;Flavio Gatti;Daniele Grosso;Kifayat Niazi;Manuela Rigano;Adriano Bevilacqua;Luigi Parodi;Fabio Siccardi;Matteo D'Andrea;Simone Lotti;Claudio Macculi;Luigi Piro;Andrea Argan;Gabriele Minervini;Guido Torrioli;Daniele Brienza;Elisabetta Cavazzuti;Angela Volpe","doi":"10.1109/TASC.2024.3518459","DOIUrl":null,"url":null,"abstract":"The Cryogenic Anti-Coincidence detector (CryoAC) is a critical component of the Athena X-ray Integral Field Unit (X-IFU), in order to fully exploit the instrument performance in the pursuit of high-resolution X-ray spectroscopy with Transition Edge Sensor (TES) detectors. Athena will be the upcoming large X-ray observatory by the European Space Agency (ESA) spanning the energy range of 0.2 to 12 keV. Recently, the mission has successfully undergone a redefinition process to align with new parameters set by ESA, and the launch is now scheduled for the mid-2030 s. The X-ray Integral Field Unit (X-IFU) represents one of the two instrumental components within the payload, functioning as a cryogenic spectrometer with a spectral resolution of about 4 eV at 7 keV. In this configuration, the CryoAC serves to mitigate the impact of cosmic ray-induced events on the spectrometer TES detectors, which compromises the sensitivity of X-ray measurements. The detector aims to identify and veto non-X-ray events, allowing measurement of faint or distant X-ray sources that will be submerged by background events. In particular, we will present the design and first experimental results of a new CryoAC sample, namely DM#144, developed on the basis of the experience gained with the last CryoAC prototypes. It is a possible candidate for the CryoAC DM1.1, the model to be tested in the future X-IFU FPA Demontration Model 1.1 campaign. Our goal is to provide a comprehensive overview of the current status of the CryoAC for the Athena X-IFU TES detector, offering valuable insights into the ongoing development an design changes of the detector.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 5","pages":"1-4"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10804009/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The Cryogenic Anti-Coincidence detector (CryoAC) is a critical component of the Athena X-ray Integral Field Unit (X-IFU), in order to fully exploit the instrument performance in the pursuit of high-resolution X-ray spectroscopy with Transition Edge Sensor (TES) detectors. Athena will be the upcoming large X-ray observatory by the European Space Agency (ESA) spanning the energy range of 0.2 to 12 keV. Recently, the mission has successfully undergone a redefinition process to align with new parameters set by ESA, and the launch is now scheduled for the mid-2030 s. The X-ray Integral Field Unit (X-IFU) represents one of the two instrumental components within the payload, functioning as a cryogenic spectrometer with a spectral resolution of about 4 eV at 7 keV. In this configuration, the CryoAC serves to mitigate the impact of cosmic ray-induced events on the spectrometer TES detectors, which compromises the sensitivity of X-ray measurements. The detector aims to identify and veto non-X-ray events, allowing measurement of faint or distant X-ray sources that will be submerged by background events. In particular, we will present the design and first experimental results of a new CryoAC sample, namely DM#144, developed on the basis of the experience gained with the last CryoAC prototypes. It is a possible candidate for the CryoAC DM1.1, the model to be tested in the future X-IFU FPA Demontration Model 1.1 campaign. Our goal is to provide a comprehensive overview of the current status of the CryoAC for the Athena X-IFU TES detector, offering valuable insights into the ongoing development an design changes of the detector.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Applied Superconductivity
IEEE Transactions on Applied Superconductivity 工程技术-工程:电子与电气
CiteScore
3.50
自引率
33.30%
发文量
650
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.
期刊最新文献
Two-Stage SQUID Amplifier With Bias Current Re-Use Status of the Cryogenic Anti-Coincidence Detector (CryoAC) for the Athena X-Ray Integral Field Unit (X-IFU) Effects of Dy and BHO Additions on Performances of MOD-YBa2Cu3O7-δ Films by Two-step Method Development of Decay Energy Spectroscopy for Radio Impurity Analysis Study on the Instability of TPS With Superconducting Harmonic Cavity Under High Beam Current Operation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1