Enhancing Indoor Localization Accuracy in Dense IoT-Integrated 5GNR Networks: Introducing SGNCL for Sensor-Guided NLoS Correction Localization

Afsaneh Saeidanezhad;Wasim Ahmad;Muhammad A. Imran;Olaoluwa R. Popoola
{"title":"Enhancing Indoor Localization Accuracy in Dense IoT-Integrated 5GNR Networks: Introducing SGNCL for Sensor-Guided NLoS Correction Localization","authors":"Afsaneh Saeidanezhad;Wasim Ahmad;Muhammad A. Imran;Olaoluwa R. Popoola","doi":"10.1109/JISPIN.2024.3509803","DOIUrl":null,"url":null,"abstract":"In the rapidly advancing field of wireless localization, achieving accurate indoor tracking is crucial for the next generation of smart factories, automated workflows, and efficient supply chains. The integration of 5G networks within industrial environments offers high connectivity, yet challenges remain in obtaining the fine-grained positioning required for localization applications. This article presents the development and simulation-based evaluation of the sensor-guided non-line-of-sight (NLoS) corrective localization (SGNCL) algorithm within the 5G New Radio network framework. The proposed algorithm utilizes data integration techniques to effectively mitigate NLoS errors, which are prevalent in complex indoor environments with high delay spreads. We describe the algorithm's design, operational principles, and the comprehensive simulation setup used to assess its performance. In comparison to the minimum variance anchor set, which exhibited a mean error of 2.5 m, the SGNCL algorithm achieved a significant improvement, reducing the mean error to 0.86 m. The results also highlight the algorithm's ability to handle varying delay spreads and sensor densities, ensuring robust localization performance across different scenarios. These findings demonstrate the potential of the SGNCL algorithm to enhance 5G-enabled indoor localization services by addressing NLoS challenges through simulation-based insights.","PeriodicalId":100621,"journal":{"name":"IEEE Journal of Indoor and Seamless Positioning and Navigation","volume":"2 ","pages":"333-342"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10804581","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Indoor and Seamless Positioning and Navigation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10804581/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the rapidly advancing field of wireless localization, achieving accurate indoor tracking is crucial for the next generation of smart factories, automated workflows, and efficient supply chains. The integration of 5G networks within industrial environments offers high connectivity, yet challenges remain in obtaining the fine-grained positioning required for localization applications. This article presents the development and simulation-based evaluation of the sensor-guided non-line-of-sight (NLoS) corrective localization (SGNCL) algorithm within the 5G New Radio network framework. The proposed algorithm utilizes data integration techniques to effectively mitigate NLoS errors, which are prevalent in complex indoor environments with high delay spreads. We describe the algorithm's design, operational principles, and the comprehensive simulation setup used to assess its performance. In comparison to the minimum variance anchor set, which exhibited a mean error of 2.5 m, the SGNCL algorithm achieved a significant improvement, reducing the mean error to 0.86 m. The results also highlight the algorithm's ability to handle varying delay spreads and sensor densities, ensuring robust localization performance across different scenarios. These findings demonstrate the potential of the SGNCL algorithm to enhance 5G-enabled indoor localization services by addressing NLoS challenges through simulation-based insights.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在密集物联网集成5GNR网络中提高室内定位精度:引入SGNCL用于传感器引导的NLoS校正定位
在快速发展的无线定位领域,实现准确的室内跟踪对于下一代智能工厂、自动化工作流程和高效供应链至关重要。5G网络在工业环境中的集成提供了高连接性,但在获得本地化应用所需的细粒度定位方面仍然存在挑战。本文介绍了5G新无线电网络框架下传感器制导非视距(NLoS)校正定位(SGNCL)算法的开发和基于仿真的评估。该算法利用数据集成技术有效地降低了NLoS误差,这种误差在具有高延迟扩展的复杂室内环境中普遍存在。我们描述了算法的设计,操作原理,以及用于评估其性能的综合仿真设置。与平均误差为2.5 m的最小方差锚集相比,SGNCL算法取得了显著的改进,平均误差降至0.86 m。结果还强调了该算法处理不同延迟分布和传感器密度的能力,确保了在不同场景下的鲁棒定位性能。这些发现证明了SGNCL算法通过基于模拟的洞察力解决NLoS挑战,从而增强5g室内定位服务的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Journal of Indoor and Seamless Positioning and Navigation Vol. 2 Table of Contents Front Cover Advancing Resilient and Trustworthy Seamless Positioning and Navigation: Highlights From the Second Volume of J-ISPIN IEEE Journal of Indoor and Seamless Positioning and Navigation Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1