Proximal Gradient Dynamics: Monotonicity, Exponential Convergence, and Applications

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-12-11 DOI:10.1109/LCSYS.2024.3516632
Anand Gokhale;Alexander Davydov;Francesco Bullo
{"title":"Proximal Gradient Dynamics: Monotonicity, Exponential Convergence, and Applications","authors":"Anand Gokhale;Alexander Davydov;Francesco Bullo","doi":"10.1109/LCSYS.2024.3516632","DOIUrl":null,"url":null,"abstract":"In this letter we study the proximal gradient dynamics. This recently-proposed continuous-time dynamics solves optimization problems whose cost functions are separable into a nonsmooth convex and a smooth component. First, we show that the cost function decreases monotonically along the trajectories of the proximal gradient dynamics. We then introduce a new condition that guarantees exponential convergence of the cost function to its optimal value, and show that this condition implies the proximal Polyak-Łojasiewicz condition. We also show that the proximal Polyak-Łojasiewicz condition guarantees exponential convergence of the cost function. Moreover, we extend these results to time-varying optimization problems, providing bounds for equilibrium tracking. Finally, we discuss applications of these findings, including the LASSO problem, certain matrix based problems and a numerical experiment on a feed-forward neural network.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2853-2858"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10794666/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter we study the proximal gradient dynamics. This recently-proposed continuous-time dynamics solves optimization problems whose cost functions are separable into a nonsmooth convex and a smooth component. First, we show that the cost function decreases monotonically along the trajectories of the proximal gradient dynamics. We then introduce a new condition that guarantees exponential convergence of the cost function to its optimal value, and show that this condition implies the proximal Polyak-Łojasiewicz condition. We also show that the proximal Polyak-Łojasiewicz condition guarantees exponential convergence of the cost function. Moreover, we extend these results to time-varying optimization problems, providing bounds for equilibrium tracking. Finally, we discuss applications of these findings, including the LASSO problem, certain matrix based problems and a numerical experiment on a feed-forward neural network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近端梯度动力学:单调性、指数收敛性及其应用
在这封信中,我们研究了近端梯度动力学。最近提出的连续时间动力学解决了成本函数可分为非光滑凸和光滑分量的优化问题。首先,我们证明了代价函数沿近端梯度动力学轨迹单调递减。然后,我们引入了一个保证代价函数指数收敛到其最优值的新条件,并证明了该条件隐含了近端Polyak-Łojasiewicz条件。我们还证明了近端Polyak-Łojasiewicz条件保证了代价函数的指数收敛。此外,我们将这些结果推广到时变优化问题,提供了平衡跟踪的界。最后,我们讨论了这些发现的应用,包括LASSO问题,某些基于矩阵的问题和前馈神经网络的数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Fast Data-Driven Predictive Control for LTI Systems: A Randomized Approach Feedback Regulation for Irreducible Max-Plus Linear Systems Adaptive Super-Twisting Sliding Mode Control With Disturbance Compensation for Speed Regulation of PMSM System Decentralized Fault Diagnosis for Constant-Time Automata Data-Driven Disturbance Decoupling Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1