Graph-Attention Diffusion for Enhanced Multivariate Time-Series Anomaly Detection

IF 5.2 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of the Industrial Electronics Society Pub Date : 2024-11-18 DOI:10.1109/OJIES.2024.3501014
Vadim Lanko;Ilya Makarov
{"title":"Graph-Attention Diffusion for Enhanced Multivariate Time-Series Anomaly Detection","authors":"Vadim Lanko;Ilya Makarov","doi":"10.1109/OJIES.2024.3501014","DOIUrl":null,"url":null,"abstract":"Multivariate time-series anomaly detection is a complex task that requires capturing temporal and spatial correlations. Recently, among the unsupervised methods, diffusion models have attracted increased attention among researchers for addressing this particular task. However, spatial information often remains underutilized or overlooked in existing models. In this article, we propose a novel reconstruction-based approach that enhances normal pattern learning through data masking and leverages diffusion models to capture both temporal and spatial interrelations via graph-attention layers. To address the problem of overgeneralization, where anomalous points are reconstructed too well, potentially abnormal points are initially masked based on the reconstruction error produced by the autoencoder. The masked time-series data is then corrupted by noise and reconstructed back by the diffusion model that removes noise in a step-by-step manner. Evaluation on four datasets from various sources demonstrates the effectiveness of our approach, achieving an average \n<inline-formula><tex-math>$F1$</tex-math></inline-formula>\n-score of 96.51%, outperforming many existing baselines. The ablation study estimates the contribution of each of the key components of the model to the score.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"1353-1364"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10755103","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10755103/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Multivariate time-series anomaly detection is a complex task that requires capturing temporal and spatial correlations. Recently, among the unsupervised methods, diffusion models have attracted increased attention among researchers for addressing this particular task. However, spatial information often remains underutilized or overlooked in existing models. In this article, we propose a novel reconstruction-based approach that enhances normal pattern learning through data masking and leverages diffusion models to capture both temporal and spatial interrelations via graph-attention layers. To address the problem of overgeneralization, where anomalous points are reconstructed too well, potentially abnormal points are initially masked based on the reconstruction error produced by the autoencoder. The masked time-series data is then corrupted by noise and reconstructed back by the diffusion model that removes noise in a step-by-step manner. Evaluation on four datasets from various sources demonstrates the effectiveness of our approach, achieving an average $F1$ -score of 96.51%, outperforming many existing baselines. The ablation study estimates the contribution of each of the key components of the model to the score.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Open Journal of the Industrial Electronics Society
IEEE Open Journal of the Industrial Electronics Society ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
10.80
自引率
2.40%
发文量
33
审稿时长
12 weeks
期刊介绍: The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments. Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.
期刊最新文献
Enhanced SVPWM Techniques for Six-Phase Inverters: Mitigation of Current Harmonics and Common Mode Voltage A Fast MPPT Method Based on Improved Water Cycle Optimization Algorithm for Photovoltaic Systems Under Partial Shading Conditions and Load Variations Review of Design Freedom Offered by Additive Manufacturing for Performance Enhancement of Electrical Machine Resilient Operation of Grid-Forming Inverters Under Large-Scale Disturbances in Low Inertia Power System Graph-Attention Diffusion for Enhanced Multivariate Time-Series Anomaly Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1