Isoaspartate formation and irreversible aggregation of collapsin response mediator protein 2: implications for the etiology of epilepsy and age-related cognitive decline

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Amino Acids Pub Date : 2024-12-24 DOI:10.1007/s00726-024-03435-0
Jeff X. Zhu, Dana W. Aswad
{"title":"Isoaspartate formation and irreversible aggregation of collapsin response mediator protein 2: implications for the etiology of epilepsy and age-related cognitive decline","authors":"Jeff X. Zhu,&nbsp;Dana W. Aswad","doi":"10.1007/s00726-024-03435-0","DOIUrl":null,"url":null,"abstract":"<div><p>Collapsin response mediator protein 2 (CRMP2) functions in the genesis and activity of neuronal connections in mammalian brain. We previously reported that a protein coincident with CRMP2 on 2D-gels undergoes marked accumulation of abnormal L-isoaspartyl sites in brain extracts of mice missing the repair enzyme, protein L-isoaspartyl methyltransferase (PIMT). To confirm and explore the significance of isoaspartyl damage in CRMP2, we expressed and purified recombinant mouse CRMP2 (rCRMP2). A polyclonal antibody made against the recombinant protein precipitated CRMP2 from brain extracts of PIMT-KO mice, but not from WT mice, suggesting that (1) the rCRMP2 antigen underwent significant isoAsp formation in the process of antibody production and (2) the isoAsp form of CRMP2 is considerably more immunogenic than the native protein. In vitro aging of rCRMP2 at pH 7.4, 37 °C for 0–28 days led to robust accumulation of isoAsp sites that were repairable by PIMT, and also induced a progressive accumulation of apparent dimers and higher-mass oligomers as judged by SDS-PAGE. A similar pattern of CRMP2 aggregation was observed in mice, with levels increasing throughout the lifespan. We conclude that CRMP2 is indeed a major target of PIMT-mediated protein repair in the brain; that isoAsp forms of CRMP2 are highly immunogenic; and that CRMP2 dysfunction makes a significant contribution to neuropathology in the PIMT-KO mouse.</p></div>","PeriodicalId":7810,"journal":{"name":"Amino Acids","volume":"57 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00726-024-03435-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Amino Acids","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00726-024-03435-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Collapsin response mediator protein 2 (CRMP2) functions in the genesis and activity of neuronal connections in mammalian brain. We previously reported that a protein coincident with CRMP2 on 2D-gels undergoes marked accumulation of abnormal L-isoaspartyl sites in brain extracts of mice missing the repair enzyme, protein L-isoaspartyl methyltransferase (PIMT). To confirm and explore the significance of isoaspartyl damage in CRMP2, we expressed and purified recombinant mouse CRMP2 (rCRMP2). A polyclonal antibody made against the recombinant protein precipitated CRMP2 from brain extracts of PIMT-KO mice, but not from WT mice, suggesting that (1) the rCRMP2 antigen underwent significant isoAsp formation in the process of antibody production and (2) the isoAsp form of CRMP2 is considerably more immunogenic than the native protein. In vitro aging of rCRMP2 at pH 7.4, 37 °C for 0–28 days led to robust accumulation of isoAsp sites that were repairable by PIMT, and also induced a progressive accumulation of apparent dimers and higher-mass oligomers as judged by SDS-PAGE. A similar pattern of CRMP2 aggregation was observed in mice, with levels increasing throughout the lifespan. We conclude that CRMP2 is indeed a major target of PIMT-mediated protein repair in the brain; that isoAsp forms of CRMP2 are highly immunogenic; and that CRMP2 dysfunction makes a significant contribution to neuropathology in the PIMT-KO mouse.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异天冬氨酸的形成和不可逆聚集的塌陷反应介质蛋白2:癫痫和年龄相关的认知能力下降的病因学意义
坍缩反应介质蛋白2 (CRMP2)在哺乳动物大脑神经元连接的发生和活动中起作用。我们之前报道了2d凝胶上与CRMP2一致的蛋白质在缺失修复酶-蛋白质l -异天冬氨酸甲基转移酶(PIMT)的小鼠脑提取物中异常l -异天冬氨酸位点的显著积累。为了证实和探讨异天冬氨酸对CRMP2损伤的意义,我们表达并纯化了重组小鼠CRMP2 (rCRMP2)。一种针对重组蛋白的多克隆抗体从pmt - ko小鼠的脑提取物中沉淀出CRMP2,而从WT小鼠中则没有,这表明(1)rCRMP2抗原在抗体产生过程中形成了显著的isoAsp, (2) isoAsp形式的CRMP2比天然蛋白具有更强的免疫原性。rCRMP2在pH 7.4, 37°C下的体外老化0-28天导致isoAsp位点的强大积累,这些位点可以通过PIMT修复,并且根据SDS-PAGE判断,还诱导了表观二聚体和高质量低聚物的渐进式积累。在小鼠中观察到类似的CRMP2聚集模式,其水平在整个生命周期中增加。我们得出结论,CRMP2确实是大脑中pmt介导的蛋白质修复的主要靶点;异asp形式的CRMP2具有高度的免疫原性;CRMP2功能障碍对pmt - ko小鼠的神经病理有重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Amino Acids
Amino Acids 生物-生化与分子生物学
CiteScore
6.40
自引率
5.70%
发文量
99
审稿时长
2.2 months
期刊介绍: Amino Acids publishes contributions from all fields of amino acid and protein research: analysis, separation, synthesis, biosynthesis, cross linking amino acids, racemization/enantiomers, modification of amino acids as phosphorylation, methylation, acetylation, glycosylation and nonenzymatic glycosylation, new roles for amino acids in physiology and pathophysiology, biology, amino acid analogues and derivatives, polyamines, radiated amino acids, peptides, stable isotopes and isotopes of amino acids. Applications in medicine, food chemistry, nutrition, gastroenterology, nephrology, neurochemistry, pharmacology, excitatory amino acids are just some of the topics covered. Fields of interest include: Biochemistry, food chemistry, nutrition, neurology, psychiatry, pharmacology, nephrology, gastroenterology, microbiology
期刊最新文献
Serum amino acid alterations in hyperuricemia: potential targets for renal disease prevention L-tyrosine inhibits the formation of amyloid fibers of human lysozyme at physiological pH and temperature Metabolism of arginine in juvenile largemouth bass (Micropterus salmoides) after oral or intraperitoneal administration of arginine or its substrates Amino acid stable carbon isotopes in nail keratin illuminate breastfeeding and weaning practices of mother – infant dyads Targeted delivery of curcumin and CM11 peptide against hepatocellular carcinoma cells based on binding affinity of PreS1-coated chitosan nanoparticles to SB3 protein
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1