Manipulating the water–air interface to drive protein assembly for functional silk-like fibroin fibre production

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-12-21 DOI:10.1038/s43246-024-00722-x
Rafael O. Moreno-Tortolero, Juliusz Michalski, Eleanor Wells, Flora Gibb, Nick Skaer, Robert Walker, Louise Serpell, Chris Holland, Sean A. Davis
{"title":"Manipulating the water–air interface to drive protein assembly for functional silk-like fibroin fibre production","authors":"Rafael O. Moreno-Tortolero, Juliusz Michalski, Eleanor Wells, Flora Gibb, Nick Skaer, Robert Walker, Louise Serpell, Chris Holland, Sean A. Davis","doi":"10.1038/s43246-024-00722-x","DOIUrl":null,"url":null,"abstract":"Silk’s remarkable properties arise from its hierarchical structure, formed through natural transformation from an aqueous solution to a solid fibre driven by pH and flow stress under low-energy conditions. In contrast, artificial silk fabrication typically relies on extrusion-based methods using coagulating baths and unnatural solvents, limiting true biomimetic replication. Here, we find that native-like silk fibroin forms viscoelastic films at the air-water interface. Utilizing this, we demonstrate a mild, all-aqueous method to seamlessly pull silk-like fibres with co-aligned nanofibrillar bundles. The fiber structure transitioned from hexagonally packed β-solenoid units at low pulling speeds to β-sheet-rich structures at higher speeds. Fibers pulled near physiological speeds (26.3 mm s-¹) exhibited optimal mechanical properties, with an elastic modulus of 8 ± 1 GPa and toughness of 8 ± 5 MJ m-³, comparable to natural silk. This platform also enables embedding nanoparticles and biologics, offering broad applications in sensors, biocatalysis, and tissue engineering, expanding the potential of silk-based composite materials. Artificial silk fabrication relies on extrusion-based methods that lack true biomimetic replication. Here, silk-like fibres composed of co-aligned nanofibrillar bundles are pulled from films produced at the air-water interface","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-10"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00722-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00722-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Silk’s remarkable properties arise from its hierarchical structure, formed through natural transformation from an aqueous solution to a solid fibre driven by pH and flow stress under low-energy conditions. In contrast, artificial silk fabrication typically relies on extrusion-based methods using coagulating baths and unnatural solvents, limiting true biomimetic replication. Here, we find that native-like silk fibroin forms viscoelastic films at the air-water interface. Utilizing this, we demonstrate a mild, all-aqueous method to seamlessly pull silk-like fibres with co-aligned nanofibrillar bundles. The fiber structure transitioned from hexagonally packed β-solenoid units at low pulling speeds to β-sheet-rich structures at higher speeds. Fibers pulled near physiological speeds (26.3 mm s-¹) exhibited optimal mechanical properties, with an elastic modulus of 8 ± 1 GPa and toughness of 8 ± 5 MJ m-³, comparable to natural silk. This platform also enables embedding nanoparticles and biologics, offering broad applications in sensors, biocatalysis, and tissue engineering, expanding the potential of silk-based composite materials. Artificial silk fabrication relies on extrusion-based methods that lack true biomimetic replication. Here, silk-like fibres composed of co-aligned nanofibrillar bundles are pulled from films produced at the air-water interface

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
操纵水-空气界面驱动蛋白质组装,以生产功能性丝状丝素纤维
丝绸的卓越性能源于它的分层结构,这种结构是在低能条件下由pH值和流动应力驱动的水溶液到固体纤维的自然转化过程中形成的。相比之下,人造丝的制造通常依赖于基于挤压的方法,使用凝固浴和非天然溶剂,限制了真正的仿生复制。在这里,我们发现天然丝素蛋白在空气-水界面形成粘弹性膜。利用这一点,我们展示了一种温和的全水方法,可以无缝地拉出具有共排列纳米纤维束的丝状纤维。纤维结构从低拉速下的六边形填充β-螺线管单元过渡到高拉速下的富β片结构。接近生理速度(26.3 mm s-¹)的纤维表现出最佳的力学性能,弹性模量为8±1 GPa,韧性为8±5 MJ m-³,与天然丝相当。该平台还可以嵌入纳米颗粒和生物制剂,在传感器、生物催化和组织工程中提供广泛的应用,扩大了丝绸基复合材料的潜力。人造丝的制造依赖于基于挤压的方法,缺乏真正的仿生复制。在这里,由共排列的纳米纤维束组成的丝状纤维是从空气-水界面产生的薄膜中拉出来的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Device-assisted strategies for drug delivery across the blood-brain barrier to treat glioblastoma. Discovery of giant unit-cell super-structure in the infinite-layer nickelate PrNiO2+x. Enhanced energy storage in relaxor (1-x)Bi0.5Na0.5TiO3-xBaZryTi1-yO3 thin films by morphotropic phase boundary engineering. Regular red-green-blue InGaN quantum wells with In content up to 40% grown on InGaN nanopyramids Grain boundary cracks patching and defect dual passivation with ammonium formate for high-efficiency triple-cation perovskite solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1