Linyan Wang, Xizhe Dai, Zicheng Liu, Yaxing Zhao, Yaoting Sun, Bangxun Mao, Shuohan Wu, Tiansheng Zhu, Fengbo Huang, Nuliqiman Maimaiti, Xue Cai, Stan Z. Li, Jianpeng Sheng, Tiannan Guo, Juan Ye
{"title":"AI-driven eyelid tumor classification in ocular oncology using proteomic data","authors":"Linyan Wang, Xizhe Dai, Zicheng Liu, Yaxing Zhao, Yaoting Sun, Bangxun Mao, Shuohan Wu, Tiansheng Zhu, Fengbo Huang, Nuliqiman Maimaiti, Xue Cai, Stan Z. Li, Jianpeng Sheng, Tiannan Guo, Juan Ye","doi":"10.1038/s41698-024-00767-8","DOIUrl":null,"url":null,"abstract":"Eyelid tumors pose diagnostic challenges due to their diverse pathological types and limited biopsy materials. This study aimed to develop an artificial intelligence (AI) diagnostic system for accurate classification of eyelid tumors. Utilizing mass spectrometry-based proteomics, we analyzed proteomic data from eight tissue types and identified eighteen novel biomarkers based on 233 formalin-fixed, paraffin-embedded (FFPE) samples from 150 patients. The 18-protein model, validated by an independent cohort (99 samples from 60 patients), exhibited high accuracy (84.8%), precision (86.2%), and recall (84.8%) in multi-class classification. The model demonstrated distinct clustering of different lesion types, as visualized through UMAP plots. Receiver operator characteristic (ROC) curve analysis revealed strong predictive ability with area under the curve (AUC) values ranging from 0.80 to 1.00. This AI-based diagnostic system holds promise for improving the efficiency and precision of eyelid tumor diagnosis, addressing the limitations of traditional pathological methods.","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":" ","pages":"1-11"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41698-024-00767-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41698-024-00767-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Eyelid tumors pose diagnostic challenges due to their diverse pathological types and limited biopsy materials. This study aimed to develop an artificial intelligence (AI) diagnostic system for accurate classification of eyelid tumors. Utilizing mass spectrometry-based proteomics, we analyzed proteomic data from eight tissue types and identified eighteen novel biomarkers based on 233 formalin-fixed, paraffin-embedded (FFPE) samples from 150 patients. The 18-protein model, validated by an independent cohort (99 samples from 60 patients), exhibited high accuracy (84.8%), precision (86.2%), and recall (84.8%) in multi-class classification. The model demonstrated distinct clustering of different lesion types, as visualized through UMAP plots. Receiver operator characteristic (ROC) curve analysis revealed strong predictive ability with area under the curve (AUC) values ranging from 0.80 to 1.00. This AI-based diagnostic system holds promise for improving the efficiency and precision of eyelid tumor diagnosis, addressing the limitations of traditional pathological methods.
期刊介绍:
Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.