AI-driven eyelid tumor classification in ocular oncology using proteomic data

IF 6.8 1区 医学 Q1 ONCOLOGY NPJ Precision Oncology Pub Date : 2024-12-23 DOI:10.1038/s41698-024-00767-8
Linyan Wang, Xizhe Dai, Zicheng Liu, Yaxing Zhao, Yaoting Sun, Bangxun Mao, Shuohan Wu, Tiansheng Zhu, Fengbo Huang, Nuliqiman Maimaiti, Xue Cai, Stan Z. Li, Jianpeng Sheng, Tiannan Guo, Juan Ye
{"title":"AI-driven eyelid tumor classification in ocular oncology using proteomic data","authors":"Linyan Wang, Xizhe Dai, Zicheng Liu, Yaxing Zhao, Yaoting Sun, Bangxun Mao, Shuohan Wu, Tiansheng Zhu, Fengbo Huang, Nuliqiman Maimaiti, Xue Cai, Stan Z. Li, Jianpeng Sheng, Tiannan Guo, Juan Ye","doi":"10.1038/s41698-024-00767-8","DOIUrl":null,"url":null,"abstract":"Eyelid tumors pose diagnostic challenges due to their diverse pathological types and limited biopsy materials. This study aimed to develop an artificial intelligence (AI) diagnostic system for accurate classification of eyelid tumors. Utilizing mass spectrometry-based proteomics, we analyzed proteomic data from eight tissue types and identified eighteen novel biomarkers based on 233 formalin-fixed, paraffin-embedded (FFPE) samples from 150 patients. The 18-protein model, validated by an independent cohort (99 samples from 60 patients), exhibited high accuracy (84.8%), precision (86.2%), and recall (84.8%) in multi-class classification. The model demonstrated distinct clustering of different lesion types, as visualized through UMAP plots. Receiver operator characteristic (ROC) curve analysis revealed strong predictive ability with area under the curve (AUC) values ranging from 0.80 to 1.00. This AI-based diagnostic system holds promise for improving the efficiency and precision of eyelid tumor diagnosis, addressing the limitations of traditional pathological methods.","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":" ","pages":"1-11"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41698-024-00767-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41698-024-00767-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Eyelid tumors pose diagnostic challenges due to their diverse pathological types and limited biopsy materials. This study aimed to develop an artificial intelligence (AI) diagnostic system for accurate classification of eyelid tumors. Utilizing mass spectrometry-based proteomics, we analyzed proteomic data from eight tissue types and identified eighteen novel biomarkers based on 233 formalin-fixed, paraffin-embedded (FFPE) samples from 150 patients. The 18-protein model, validated by an independent cohort (99 samples from 60 patients), exhibited high accuracy (84.8%), precision (86.2%), and recall (84.8%) in multi-class classification. The model demonstrated distinct clustering of different lesion types, as visualized through UMAP plots. Receiver operator characteristic (ROC) curve analysis revealed strong predictive ability with area under the curve (AUC) values ranging from 0.80 to 1.00. This AI-based diagnostic system holds promise for improving the efficiency and precision of eyelid tumor diagnosis, addressing the limitations of traditional pathological methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于蛋白质组学数据的人工智能驱动眼睑肿瘤分类
眼睑肿瘤由于其多样的病理类型和有限的活检材料,给诊断带来了挑战。本研究旨在开发一种用于眼睑肿瘤准确分类的人工智能诊断系统。利用基于质谱的蛋白质组学,我们分析了来自8种组织类型的蛋白质组学数据,并基于来自150名患者的233份福尔马林固定石蜡包埋(FFPE)样品鉴定出18种新的生物标志物。通过独立队列(来自60例患者的99个样本)验证的18蛋白模型在多类别分类中具有较高的准确率(84.8%)、精密度(86.2%)和召回率(84.8%)。该模型通过UMAP图显示出不同病变类型的明显聚类。Receiver operator characteristic (ROC)曲线分析显示较强的预测能力,曲线下面积(area under curve, AUC)在0.80 ~ 1.00之间。这种基于人工智能的诊断系统有望提高眼睑肿瘤诊断的效率和精度,解决传统病理方法的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
期刊最新文献
Real life outcome analysis of breast cancer brain metastases treated with Trastuzumab Deruxtecan. A multi-modal deep learning model for prediction of Ki-67 for meningiomas using pretreatment MR images. Defective homologous recombination and genomic instability predict increased responsiveness to carbon ion radiotherapy in pancreatic cancer. Integrins identified as potential prognostic markers in osteosarcoma through multi-omics and multi-dataset analysis. Prediction of post-treatment recurrence in early-stage breast cancer using deep-learning with mid-infrared chemical histopathological imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1