{"title":"QM/MM Calculations on Excited-State Proton Transfer and Photoisomerization of a Red Fluorescent Protein mKeima with Large Stokes Shift.","authors":"Guang-Ning Pan, Xiang-Yang Liu, Ganglong Cui, Wei-Hai Fang","doi":"10.1021/acs.biochem.4c00586","DOIUrl":null,"url":null,"abstract":"<p><p>Large Stokes shift red fluorescent proteins (LSS-RFPs) are of growing interest for multicolor bioimaging applications. However, their photochemical mechanisms are not fully understood. Here, we employed the QM(XDW-CASPT2//CASSCF)/MM method to investigate the excited-state proton transfer and photoisomerization processes of the LSS-RFP mKeima starting from its cis neutral isomer. Upon excitation to the bright S<sub>1</sub> state in the Franck-Condon region, mKeima relaxes to a metastable minimum-energy state. From this short-lived species, two competing deactivation pathways are available: the excited-state proton transfer in the S<sub>1</sub> state, and the S<sub>1</sub> decay via the S<sub>1</sub>/S<sub>0</sub> conical intersection as a result of the cis-trans photoisomerization. In comparison, the former is a dominant excited-state relaxation pathway, leading to the cis anionic isomer of mKeima in the S<sub>1</sub> state. This anionic intermediate then undergoes cis-trans photoisomerization after overcoming a barrier of approximately 10 kcal/mol in the S<sub>1</sub> state, which is followed by an excited-state decay via the S<sub>1</sub>/S<sub>0</sub> conical intersection region. The efficient nonadiabatic decay of the cis anionic isomer of mKeima in the S<sub>1</sub> state inhibits the radiative process, leading to a weak emission around 520 nm observed experimentally. These findings shed important mechanistic light on the experimental observations and provide valuable insights that could help in the design of LSS-RFPs with superior fluorescence properties.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00586","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Large Stokes shift red fluorescent proteins (LSS-RFPs) are of growing interest for multicolor bioimaging applications. However, their photochemical mechanisms are not fully understood. Here, we employed the QM(XDW-CASPT2//CASSCF)/MM method to investigate the excited-state proton transfer and photoisomerization processes of the LSS-RFP mKeima starting from its cis neutral isomer. Upon excitation to the bright S1 state in the Franck-Condon region, mKeima relaxes to a metastable minimum-energy state. From this short-lived species, two competing deactivation pathways are available: the excited-state proton transfer in the S1 state, and the S1 decay via the S1/S0 conical intersection as a result of the cis-trans photoisomerization. In comparison, the former is a dominant excited-state relaxation pathway, leading to the cis anionic isomer of mKeima in the S1 state. This anionic intermediate then undergoes cis-trans photoisomerization after overcoming a barrier of approximately 10 kcal/mol in the S1 state, which is followed by an excited-state decay via the S1/S0 conical intersection region. The efficient nonadiabatic decay of the cis anionic isomer of mKeima in the S1 state inhibits the radiative process, leading to a weak emission around 520 nm observed experimentally. These findings shed important mechanistic light on the experimental observations and provide valuable insights that could help in the design of LSS-RFPs with superior fluorescence properties.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.