JUMPlib: Integrative Search Tool Combining Fragment Ion Indexing with Comprehensive TMT Spectral Libraries.

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Journal of Proteome Research Pub Date : 2025-02-07 Epub Date: 2024-12-23 DOI:10.1021/acs.jproteome.4c00410
Suresh Poudel, Zuo-Fei Yuan, Yingxue Fu, Long Wu, Him Shrestha, Anthony A High, Junmin Peng, Xusheng Wang
{"title":"JUMPlib: Integrative Search Tool Combining Fragment Ion Indexing with Comprehensive TMT Spectral Libraries.","authors":"Suresh Poudel, Zuo-Fei Yuan, Yingxue Fu, Long Wu, Him Shrestha, Anthony A High, Junmin Peng, Xusheng Wang","doi":"10.1021/acs.jproteome.4c00410","DOIUrl":null,"url":null,"abstract":"<p><p>The identification of peptides is a cornerstone of mass spectrometry-based proteomics. Spectral library-based algorithms are well-established methods to enhance the identification efficiency of peptides during database searches in proteomics. However, these algorithms are not specifically tailored for tandem mass tag (TMT)-based proteomics due to the lack of high-quality TMT spectral libraries. Here, we introduce JUMPlib, a computational tool for a TMT-based spectral library search. JUMPlib comprises components for generating spectral libraries, conducting library searches, filtering peptide identifications, and quantifying peptides and proteins. Fragment ion indexing in the libraries increases the search speed and utilizing the experimental retention time of precursor ions improves peptide identification. We found that methionine oxidation is a major factor contributing to large shifts in peptide retention time. To test the JUMPlib program, we curated two comprehensive human libraries for the labeling of TMT6/10/11 and TMT16/18 reagents, with ∼286,000 precursor ions and ∼304,000 precursor ions, respectively. Our analyses demonstrate that JUMPlib, employing the fragment ion index strategy, enhances search speed and exhibits high sensitivity and specificity, achieving approximately a 25% increase in peptide-spectrum matches compared to other search tools. Overall, JUMPlib serves as a streamlined computational platform designed to enhance peptide identification in TMT-based proteomics. Both the JUMPlib source code and libraries are publicly available.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":"410-418"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00410","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The identification of peptides is a cornerstone of mass spectrometry-based proteomics. Spectral library-based algorithms are well-established methods to enhance the identification efficiency of peptides during database searches in proteomics. However, these algorithms are not specifically tailored for tandem mass tag (TMT)-based proteomics due to the lack of high-quality TMT spectral libraries. Here, we introduce JUMPlib, a computational tool for a TMT-based spectral library search. JUMPlib comprises components for generating spectral libraries, conducting library searches, filtering peptide identifications, and quantifying peptides and proteins. Fragment ion indexing in the libraries increases the search speed and utilizing the experimental retention time of precursor ions improves peptide identification. We found that methionine oxidation is a major factor contributing to large shifts in peptide retention time. To test the JUMPlib program, we curated two comprehensive human libraries for the labeling of TMT6/10/11 and TMT16/18 reagents, with ∼286,000 precursor ions and ∼304,000 precursor ions, respectively. Our analyses demonstrate that JUMPlib, employing the fragment ion index strategy, enhances search speed and exhibits high sensitivity and specificity, achieving approximately a 25% increase in peptide-spectrum matches compared to other search tools. Overall, JUMPlib serves as a streamlined computational platform designed to enhance peptide identification in TMT-based proteomics. Both the JUMPlib source code and libraries are publicly available.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
JUMPlib:将碎片离子索引与全面的 TMT 光谱库相结合的综合搜索工具。
肽的鉴定是基于质谱的蛋白质组学的基石。基于谱库的算法是提高蛋白质组学数据库搜索中多肽识别效率的有效方法。然而,由于缺乏高质量的串联质量标签(TMT)谱库,这些算法并不是专门为基于串联质量标签(TMT)的蛋白质组学量身定制的。在这里,我们介绍了JUMPlib,一个基于tmt的光谱库搜索的计算工具。JUMPlib包括用于生成光谱文库,进行文库搜索,过滤肽鉴定以及定量肽和蛋白质的组件。片段离子在文库中的标引提高了搜索速度,利用前体离子的实验保留时间提高了多肽的鉴定。我们发现蛋氨酸氧化是导致肽保留时间大幅变化的主要因素。为了测试JUMPlib程序,我们策划了两个全面的人类文库,用于标记TMT6/10/11和TMT16/18试剂,分别具有~ 286,000个前体离子和~ 304,000个前体离子。我们的分析表明,采用片段离子索引策略的JUMPlib提高了搜索速度,具有高灵敏度和特异性,与其他搜索工具相比,肽谱匹配率提高了约25%。总体而言,JUMPlib是一个简化的计算平台,旨在增强基于tmt的蛋白质组学中的肽鉴定。JUMPlib源代码和库都是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
期刊最新文献
Multiplatform Lipid Analysis of the Brain of Aging Mice by Mass Spectrometry. O-GlcNAcylation: Sagacious Orchestrator of Bone-, Joint-, and Spine-Related Diseases. Issue Publication Information Issue Editorial Masthead Deep Saliva Proteomics Elucidating the Pathogenesis of Early Childhood Caries and Identifying Biomarkers for Early Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1