Overexpression of miR-328-3p Inhibits Epithelial-Mesenchymal Transition in Prostate Cancer by Downregulating PFN1.

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Applied Biochemistry and Biotechnology Pub Date : 2024-12-24 DOI:10.1007/s12010-024-05103-1
ZhenHua Gu, JianZhong Li, YuCheng Yang, Rui Ding, MeiLi Wang, Jian Chen
{"title":"Overexpression of miR-328-3p Inhibits Epithelial-Mesenchymal Transition in Prostate Cancer by Downregulating PFN1.","authors":"ZhenHua Gu, JianZhong Li, YuCheng Yang, Rui Ding, MeiLi Wang, Jian Chen","doi":"10.1007/s12010-024-05103-1","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNA (miR)-328-3p is believed to have anti-tumor impacts in various human cancers. However, its role in prostate cancer (PCa) is uncertain. In this research, miR-328-3p expression in PCa was reduced. Meanwhile, it was discovered that miR-328-3p directly targeted profilin-1 (PFN1) 3'-untranslated region to negatively modulate PFN1. Elevating miR-328-3p or reducing PFN1 suppressed cell growth, migration, and invasion, and epithelial-mesenchymal transition; overexpression of miR-328-3p or inhibition of PFN1 delayed tumor growth in vivo. Further studies found that PCa patients with advanced T stage or high Gleason score had significantly lower miR-328-3p compared to PCa patients with early stage or low score. In addition, PCa patients with high miR-328-3p had a better prognosis than those with low miR-328-3p. Briefly, this study highlights the clinical and biological role of miR-328-3p as a tumor suppressor miRNA in PCa and explores the downstream mechanisms of miR-328-3p.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05103-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

MicroRNA (miR)-328-3p is believed to have anti-tumor impacts in various human cancers. However, its role in prostate cancer (PCa) is uncertain. In this research, miR-328-3p expression in PCa was reduced. Meanwhile, it was discovered that miR-328-3p directly targeted profilin-1 (PFN1) 3'-untranslated region to negatively modulate PFN1. Elevating miR-328-3p or reducing PFN1 suppressed cell growth, migration, and invasion, and epithelial-mesenchymal transition; overexpression of miR-328-3p or inhibition of PFN1 delayed tumor growth in vivo. Further studies found that PCa patients with advanced T stage or high Gleason score had significantly lower miR-328-3p compared to PCa patients with early stage or low score. In addition, PCa patients with high miR-328-3p had a better prognosis than those with low miR-328-3p. Briefly, this study highlights the clinical and biological role of miR-328-3p as a tumor suppressor miRNA in PCa and explores the downstream mechanisms of miR-328-3p.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
miR-328-3p过表达通过下调PFN1抑制前列腺癌上皮-间质转化
MicroRNA (miR)-328-3p被认为在多种人类癌症中具有抗肿瘤作用。然而,其在前列腺癌(PCa)中的作用尚不确定。在本研究中,miR-328-3p在PCa中的表达降低。同时发现miR-328-3p直接靶向profilin-1 (PFN1) 3'-非翻译区,负向调节PFN1。升高miR-328-3p或降低PFN1可抑制细胞生长、迁移和侵袭以及上皮-间质转化;miR-328-3p过表达或PFN1抑制在体内延迟肿瘤生长。进一步研究发现,晚期T期或高Gleason评分的PCa患者miR-328-3p水平明显低于早期或低评分的PCa患者。此外,高miR-328-3p的PCa患者预后优于低miR-328-3p的PCa患者。简而言之,本研究强调了miR-328-3p作为肿瘤抑制miRNA在PCa中的临床和生物学作用,并探讨了miR-328-3p的下游机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
期刊最新文献
Correction to: Evaluation and Optimization of the Different Process Parameters of Mild Acid Pretreatment of Waste Lignocellulosic Biomass for Enhanced Energy Procreation. Excellent Laccase Mimic Activity of Cu-Melamine and Its Applications in the Degradation of Congo Red. Identification of PIF1 as a Ferroptosis-Related Prognostic Biomarker Correlated with Immune Infiltration in Hepatocellular Carcinoma. Targeted Delivery of SmacN7 Peptide Induces Immunogenic Cell Death in Cervical Cancer Treatment. Valorization of Cocoa and Peach-Palm Wastes for the Production of Amylases by Pleurotus pulmonarius CCB19 and Its Application as an Additive in Commercial Detergents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1