In Vivo-Like Scaffold-Free 3D In Vitro Models of Muscular Dystrophies: The Case for Anchored Cell Sheet Engineering in Personalized Medicine.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL Advanced Healthcare Materials Pub Date : 2024-12-24 DOI:10.1002/adhm.202404465
Alireza Shahin-Shamsabadi, John Cappuccitti
{"title":"In Vivo-Like Scaffold-Free 3D In Vitro Models of Muscular Dystrophies: The Case for Anchored Cell Sheet Engineering in Personalized Medicine.","authors":"Alireza Shahin-Shamsabadi, John Cappuccitti","doi":"10.1002/adhm.202404465","DOIUrl":null,"url":null,"abstract":"<p><p>Progress in understanding the underlying mechanisms of muscular dystrophies is hindered by the lack of pathophysiologically relevant in vitro models. Here, an entirely scaffold-free anchored cell sheet engineering platform is used to create patient-specific three-dimensional (3D) skeletal muscle in vitro models. This approach effectively replicates mature muscle phenotypes and tissue- and disease-specific extracellular matric (ECM). Models were developed using primary cells from healthy individuals and patients with Duchenne Muscular Dystrophy and Myotonic Dystrophy Type 1. Through a combination of quantified histological staining (Hematoxylin & Eosin, Movat's Pentachrome, Masson's Trichrome) and immunostaining (desmin, myosin heavy chain, laminin, and dystrophin), it was demonstrated that the models formed mature constructs closely resembling their respective in vivo conditions. Proteomics analysis revealed that the models exhibited appropriate upregulation and downregulation of disease-relevant pathways. Models of diseased tissues accurately reflected key phenotypic features of the diseases, including alterations in muscle fiber integrity and ECM composition. Upon treatment with therapeutically beneficial drugs, significant changes in their proteomic profiles were documented, highlighting the models' potential for drug screening. This novel in vitro modeling approach, unlike other 3D techniques that rely on exogenous biomaterials that interfere with natural cellular behaviors, provides a promising platform for studying muscular dystrophies.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2404465"},"PeriodicalIF":10.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202404465","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Progress in understanding the underlying mechanisms of muscular dystrophies is hindered by the lack of pathophysiologically relevant in vitro models. Here, an entirely scaffold-free anchored cell sheet engineering platform is used to create patient-specific three-dimensional (3D) skeletal muscle in vitro models. This approach effectively replicates mature muscle phenotypes and tissue- and disease-specific extracellular matric (ECM). Models were developed using primary cells from healthy individuals and patients with Duchenne Muscular Dystrophy and Myotonic Dystrophy Type 1. Through a combination of quantified histological staining (Hematoxylin & Eosin, Movat's Pentachrome, Masson's Trichrome) and immunostaining (desmin, myosin heavy chain, laminin, and dystrophin), it was demonstrated that the models formed mature constructs closely resembling their respective in vivo conditions. Proteomics analysis revealed that the models exhibited appropriate upregulation and downregulation of disease-relevant pathways. Models of diseased tissues accurately reflected key phenotypic features of the diseases, including alterations in muscle fiber integrity and ECM composition. Upon treatment with therapeutically beneficial drugs, significant changes in their proteomic profiles were documented, highlighting the models' potential for drug screening. This novel in vitro modeling approach, unlike other 3D techniques that rely on exogenous biomaterials that interfere with natural cellular behaviors, provides a promising platform for studying muscular dystrophies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
期刊最新文献
A Smart mRNA-Initiated Theranostic Multi-shRNA Nanofactory for Precise and Efficient Cancer Gene Therapy. Three-Level Nanoparticle Rocket Strategy for Colorectal Cancer Therapeutics in Photothermal Therapy, Inflammation Modulation, and Cuproptosis Induction. Ultrasound-Triggered Oxygen Release System for Accelerating Wound Healing of Diabetic Foot Ulcers. Biomimetic Diselenide-Sonosensitizer Nanoplatform for Enhanced Sonodynamic Therapy and In Situ Remodeling Immunosuppressive Microenvironment via Activating Innate and Adaptive Immunotherapy. Emerging Violet Phosphorus Nanomaterial for Biomedical Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1