A Smart mRNA-Initiated Theranostic Multi-shRNA Nanofactory for Precise and Efficient Cancer Gene Therapy.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL Advanced Healthcare Materials Pub Date : 2025-01-10 DOI:10.1002/adhm.202404159
Ming Shi, Yifang He, Xiaohong Zhong, Huakui Huang, Jing Hua, Shulong Wang, Jiayao Xu, Shulin Zhao, Hong Liang, Yong Huang
{"title":"A Smart mRNA-Initiated Theranostic Multi-shRNA Nanofactory for Precise and Efficient Cancer Gene Therapy.","authors":"Ming Shi, Yifang He, Xiaohong Zhong, Huakui Huang, Jing Hua, Shulong Wang, Jiayao Xu, Shulin Zhao, Hong Liang, Yong Huang","doi":"10.1002/adhm.202404159","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the significant potential of short hairpin RNA (shRNA)-mediated gene therapy for various diseases, the clinical success of cancer treatment remains poor, partly because of low selectivity and low efficiency. In this study, an mRNA-initiated autonomous multi-shRNA nanofactory (RNF@CM) is designed for in vivo amplification imaging and precise cancer treatment. The RNF@CM consists of a gold nanoparticle core, an interlayer of two types of three-stranded DNA/RNA hybrid probes, one of which is bound to aptamer-inhibited DNA polymerases, and an outer layer of the cancer cell membrane. After the specific delivery of RNF@CM into target cancer cells, an intracellular tumour-related mRNA target can initiate the RNF@CM with a circular strand-displacement polymerisation reaction, resulting in the release of significantly amplified fluorescence and continuous production of three types of shRNAs. The RNF@CM effectively distinguished cancer cells from normal cells, exclusively produced multiple shRNAs in response to a specific mRNA target in cancer cells, accurately diagnosed tumours in vivo, and significantly inhibited tumour growth with negligible toxicity, expanding the toolbox for on-demand gene delivery and precision theranostics.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2404159"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202404159","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the significant potential of short hairpin RNA (shRNA)-mediated gene therapy for various diseases, the clinical success of cancer treatment remains poor, partly because of low selectivity and low efficiency. In this study, an mRNA-initiated autonomous multi-shRNA nanofactory (RNF@CM) is designed for in vivo amplification imaging and precise cancer treatment. The RNF@CM consists of a gold nanoparticle core, an interlayer of two types of three-stranded DNA/RNA hybrid probes, one of which is bound to aptamer-inhibited DNA polymerases, and an outer layer of the cancer cell membrane. After the specific delivery of RNF@CM into target cancer cells, an intracellular tumour-related mRNA target can initiate the RNF@CM with a circular strand-displacement polymerisation reaction, resulting in the release of significantly amplified fluorescence and continuous production of three types of shRNAs. The RNF@CM effectively distinguished cancer cells from normal cells, exclusively produced multiple shRNAs in response to a specific mRNA target in cancer cells, accurately diagnosed tumours in vivo, and significantly inhibited tumour growth with negligible toxicity, expanding the toolbox for on-demand gene delivery and precision theranostics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
期刊最新文献
A Smart mRNA-Initiated Theranostic Multi-shRNA Nanofactory for Precise and Efficient Cancer Gene Therapy. Three-Level Nanoparticle Rocket Strategy for Colorectal Cancer Therapeutics in Photothermal Therapy, Inflammation Modulation, and Cuproptosis Induction. Ultrasound-Triggered Oxygen Release System for Accelerating Wound Healing of Diabetic Foot Ulcers. Biomimetic Diselenide-Sonosensitizer Nanoplatform for Enhanced Sonodynamic Therapy and In Situ Remodeling Immunosuppressive Microenvironment via Activating Innate and Adaptive Immunotherapy. Emerging Violet Phosphorus Nanomaterial for Biomedical Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1