Aleksandra Lavrikova, Mário Janda, Helena Bujdáková, Karol Hensel
{"title":"Eradication of single- and mixed-species biofilms of P. aeruginosa and S. aureus by pulsed streamer corona discharge cold atmospheric plasma.","authors":"Aleksandra Lavrikova, Mário Janda, Helena Bujdáková, Karol Hensel","doi":"10.1016/j.scitotenv.2024.178184","DOIUrl":null,"url":null,"abstract":"<p><p>Cold atmospheric plasma has recently gained much attention due to its antimicrobial effects. Among others, plasma has proven its potential to combat microbial biofilms. Yet, knowledge of complex network interactions between individual microbial species in natural infection environments of the biofilm as well as plasma-biofilm inactivation pathways is limited. This study reports the effects of a cold plasma generated by a pulsed streamer corona discharge in air on single- and mixed-species biofilms of P. aeruginosa and S. aureus. The plasma causes significant biofilm biomass reduction, bacteria inactivation, and alteration in intracellular metabolism. For single-species biofilms S. aureus is found more tolerant to plasma than P. aeruginosa, and mixed-species biofilms display higher tolerance of both bacteria to plasma than in single-species biofilms. A comparison between wet and dehydrated biofilms reveals reduced plasma efficacy in wet environments. Consequently, biofilm dehydration prior to the plasma treatment facilitates penetration of plasma reactive species leading to higher bacteria inactivation. The evaluation of plasma-generated gaseous reactive species reveals O<sub>3</sub> and NO<sub>2</sub> being dominant species contributing to the etching mechanism of the overall plasma anti-biofilm effect. Despite the strong anti-biofilm effect is obtained, the biofilm regrowth on the next day after plasma treatment implies on the inability of pulsed streamer corona discharge to permanently eradicate biofilms on a surface. The search for adequate plasma treatment conditions of biofilms remains crucial to avoid the appearance of more adaptive biofilms.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"959 ","pages":"178184"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.178184","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cold atmospheric plasma has recently gained much attention due to its antimicrobial effects. Among others, plasma has proven its potential to combat microbial biofilms. Yet, knowledge of complex network interactions between individual microbial species in natural infection environments of the biofilm as well as plasma-biofilm inactivation pathways is limited. This study reports the effects of a cold plasma generated by a pulsed streamer corona discharge in air on single- and mixed-species biofilms of P. aeruginosa and S. aureus. The plasma causes significant biofilm biomass reduction, bacteria inactivation, and alteration in intracellular metabolism. For single-species biofilms S. aureus is found more tolerant to plasma than P. aeruginosa, and mixed-species biofilms display higher tolerance of both bacteria to plasma than in single-species biofilms. A comparison between wet and dehydrated biofilms reveals reduced plasma efficacy in wet environments. Consequently, biofilm dehydration prior to the plasma treatment facilitates penetration of plasma reactive species leading to higher bacteria inactivation. The evaluation of plasma-generated gaseous reactive species reveals O3 and NO2 being dominant species contributing to the etching mechanism of the overall plasma anti-biofilm effect. Despite the strong anti-biofilm effect is obtained, the biofilm regrowth on the next day after plasma treatment implies on the inability of pulsed streamer corona discharge to permanently eradicate biofilms on a surface. The search for adequate plasma treatment conditions of biofilms remains crucial to avoid the appearance of more adaptive biofilms.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.