{"title":"Continuous Flow Synthesis and Applications of Metal-Organic Frameworks: Advances and Innovations.","authors":"Rashed Rahman, Fazal Malik, Zaw Min Hein, Junrong Huang, Hengzhi You, Yuxiang Zhu","doi":"10.1002/cplu.202400634","DOIUrl":null,"url":null,"abstract":"<p><p>Metal-Organic Frameworks (MOFs) are an emerging class of solid-state materials comprising inorganic elements and organic molecules. These hybrid materials are widely recognized for their diverse properties, rendering them indispensable in the field of organic synthesis, material science and the pharmaceutical industry. Although the traditional batch methods for MOFs synthesis are well-developed, they often struggle with reproducibility, scalability and environmental issues. However, the development of continuous flow techniques has emerged as a promising alternative, offering more efficient mass and heat transfer, precise reaction control, greater potential for automation, improved safety, and reduced environmental impact. This review primarily focuses on advanced continuous flow synthesis of MOFs incorporating techniques such as air flow, spray drying, microwave, micro-droplets, supercritical carbon dioxide, and ultrasound. Additionally, the recent advancements in applying MOFs as heterogeneous catalysts for various organic transformations under continuous flow conditions are discussed, categorized by the type of bond formation, including C-H bond formation (hydrogen reduction), C-C bond formation, and C-O bond formation.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400634"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202400634","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal-Organic Frameworks (MOFs) are an emerging class of solid-state materials comprising inorganic elements and organic molecules. These hybrid materials are widely recognized for their diverse properties, rendering them indispensable in the field of organic synthesis, material science and the pharmaceutical industry. Although the traditional batch methods for MOFs synthesis are well-developed, they often struggle with reproducibility, scalability and environmental issues. However, the development of continuous flow techniques has emerged as a promising alternative, offering more efficient mass and heat transfer, precise reaction control, greater potential for automation, improved safety, and reduced environmental impact. This review primarily focuses on advanced continuous flow synthesis of MOFs incorporating techniques such as air flow, spray drying, microwave, micro-droplets, supercritical carbon dioxide, and ultrasound. Additionally, the recent advancements in applying MOFs as heterogeneous catalysts for various organic transformations under continuous flow conditions are discussed, categorized by the type of bond formation, including C-H bond formation (hydrogen reduction), C-C bond formation, and C-O bond formation.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.