Novel environmental variables help explain winter weather effects on activity and habitat selection of greater sage-grouse along the border of Colorado and Wyoming, USA.
Caitlyn P Wanner, Aaron C Pratt, Adele K Reinking, Glen E Liston, Jeffrey L Beck
{"title":"Novel environmental variables help explain winter weather effects on activity and habitat selection of greater sage-grouse along the border of Colorado and Wyoming, USA.","authors":"Caitlyn P Wanner, Aaron C Pratt, Adele K Reinking, Glen E Liston, Jeffrey L Beck","doi":"10.1007/s00484-024-02827-x","DOIUrl":null,"url":null,"abstract":"<p><p>For non-hibernating species within temperate climates, survival during severe winter weather often depends on individuals' behavioral response and available refugia. Identifying refugia habitat that sustains populations during adverse winter conditions can be difficult and complex. This study provides an example of how modeled, biologically relevant snow and weather information can help identify important relationships between habitat selection and dynamic winter landscapes using greater sage-grouse (Centrocercus urophasianus, hereafter \"sage-grouse\") as a model species. We evaluated whether sage-grouse responded to weather conditions in two ways: through (1) positive selection for refugia habitat to minimize adverse weather exposure, or (2) lowered activity level to minimize thermoregulation and locomotion expense. Our results suggested that sage-grouse respond to winter weather conditions by seeking refugia rather than changing daily activity levels. During periods of lower wind chill temperatures and greater wind speeds, sage-grouse selected areas with sheltered aspects and greater sagebrush (Artemisia spp.) cover. Broadly, sage-grouse selected winter home ranges in sagebrush shrublands characterized by higher wind chill temperatures, greater wind speeds, and greater blizzarding conditions. However, within these home ranges, sage-grouse specifically selected habitats with greater above-snow sagebrush cover, lower wind speeds, and lower blizzarding conditions. Our study underscores the importance of examining habitat selection at narrower temporal scales than entire seasons and demonstrates the value of incorporating targeted weather variables that wholistically synthesize winter conditions. This research allows identification of refugia habitat that sustain populations during winter disproportionate to their spatial extent or frequency of use, facilitating more targeted management and conservation efforts.</p>","PeriodicalId":588,"journal":{"name":"International Journal of Biometeorology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biometeorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00484-024-02827-x","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
For non-hibernating species within temperate climates, survival during severe winter weather often depends on individuals' behavioral response and available refugia. Identifying refugia habitat that sustains populations during adverse winter conditions can be difficult and complex. This study provides an example of how modeled, biologically relevant snow and weather information can help identify important relationships between habitat selection and dynamic winter landscapes using greater sage-grouse (Centrocercus urophasianus, hereafter "sage-grouse") as a model species. We evaluated whether sage-grouse responded to weather conditions in two ways: through (1) positive selection for refugia habitat to minimize adverse weather exposure, or (2) lowered activity level to minimize thermoregulation and locomotion expense. Our results suggested that sage-grouse respond to winter weather conditions by seeking refugia rather than changing daily activity levels. During periods of lower wind chill temperatures and greater wind speeds, sage-grouse selected areas with sheltered aspects and greater sagebrush (Artemisia spp.) cover. Broadly, sage-grouse selected winter home ranges in sagebrush shrublands characterized by higher wind chill temperatures, greater wind speeds, and greater blizzarding conditions. However, within these home ranges, sage-grouse specifically selected habitats with greater above-snow sagebrush cover, lower wind speeds, and lower blizzarding conditions. Our study underscores the importance of examining habitat selection at narrower temporal scales than entire seasons and demonstrates the value of incorporating targeted weather variables that wholistically synthesize winter conditions. This research allows identification of refugia habitat that sustain populations during winter disproportionate to their spatial extent or frequency of use, facilitating more targeted management and conservation efforts.
期刊介绍:
The Journal publishes original research papers, review articles and short communications on studies examining the interactions between living organisms and factors of the natural and artificial atmospheric environment.
Living organisms extend from single cell organisms, to plants and animals, including humans. The atmospheric environment includes climate and weather, electromagnetic radiation, and chemical and biological pollutants. The journal embraces basic and applied research and practical aspects such as living conditions, agriculture, forestry, and health.
The journal is published for the International Society of Biometeorology, and most membership categories include a subscription to the Journal.