Cameras or Camus? Comparing Snow Track Surveys and Camera Traps to Estimate Densities of Unmarked Wildlife Populations.

IF 2.3 2区 生物学 Q2 ECOLOGY Ecology and Evolution Pub Date : 2024-12-23 eCollection Date: 2024-12-01 DOI:10.1002/ece3.70747
Scott J Waller, Mark Hebblewhite, Jedediah F Brodie, Svetlana V Soutyrina, Dale G Miquelle
{"title":"Cameras or <i>Camus</i>? Comparing Snow Track Surveys and Camera Traps to Estimate Densities of Unmarked Wildlife Populations.","authors":"Scott J Waller, Mark Hebblewhite, Jedediah F Brodie, Svetlana V Soutyrina, Dale G Miquelle","doi":"10.1002/ece3.70747","DOIUrl":null,"url":null,"abstract":"<p><p>Population density is a valuable metric used to manage wildlife populations. In the Russian Far East, managers use the Formozov- Malyushev-Pereleshin (FMP) snow tracking method to estimate densities of ungulates for hunting management. The FMP also informs Amur tiger (<i>Panthera tigris altaica</i>) conservation since estimates of prey density and biomass help inform conservation interventions. Yet, climate change and challenges with survey design call into question the reliability of the FMP. Camera traps offer a promising alternative, but they remain unexplored for monitoring tiger prey density. Over three years (2020-2022), we used the FMP and camera-based methods to estimate densities of four prey species of the Amur tiger in the Sikhote- Alin Biosphere Reserve, Russian Far East: wild boar (<i>Sus scrofa</i>), red deer (<i>Cervus canadensis</i>), roe deer (<i>Capreolus pygargus</i>), and sika deer (<i>Cervus nippon</i>). We compared FMP results from snow track survey routes either along trails, or along routes representative of the study area, and estimates derived from camera data using the random encounter model (REM), space-to-event model (STE), and time-to-event model (TTE). We found that density estimates from representative routes were typically lower than routes along trails and indicated different relative densities of prey. Density estimates from camera traps and representative track surveys were generally similar with no significant relative bias, but precision was poor for all methods. Differences between estimates were amplified when converted to prey biomass, particularly with larger, more abundant prey, which poses a challenge for their utility for tiger managers. We conclude camera traps can offer an alternative to snow track surveys when monitoring unmarked prey, but we caution that they require considerably more resources to implement. Tiger managers should be especially cautious when extrapolating density to estimates of prey biomass, and we encourage future research to develop more robust methods for doing so.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"14 12","pages":"e70747"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664323/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/ece3.70747","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Population density is a valuable metric used to manage wildlife populations. In the Russian Far East, managers use the Formozov- Malyushev-Pereleshin (FMP) snow tracking method to estimate densities of ungulates for hunting management. The FMP also informs Amur tiger (Panthera tigris altaica) conservation since estimates of prey density and biomass help inform conservation interventions. Yet, climate change and challenges with survey design call into question the reliability of the FMP. Camera traps offer a promising alternative, but they remain unexplored for monitoring tiger prey density. Over three years (2020-2022), we used the FMP and camera-based methods to estimate densities of four prey species of the Amur tiger in the Sikhote- Alin Biosphere Reserve, Russian Far East: wild boar (Sus scrofa), red deer (Cervus canadensis), roe deer (Capreolus pygargus), and sika deer (Cervus nippon). We compared FMP results from snow track survey routes either along trails, or along routes representative of the study area, and estimates derived from camera data using the random encounter model (REM), space-to-event model (STE), and time-to-event model (TTE). We found that density estimates from representative routes were typically lower than routes along trails and indicated different relative densities of prey. Density estimates from camera traps and representative track surveys were generally similar with no significant relative bias, but precision was poor for all methods. Differences between estimates were amplified when converted to prey biomass, particularly with larger, more abundant prey, which poses a challenge for their utility for tiger managers. We conclude camera traps can offer an alternative to snow track surveys when monitoring unmarked prey, but we caution that they require considerably more resources to implement. Tiger managers should be especially cautious when extrapolating density to estimates of prey biomass, and we encourage future research to develop more robust methods for doing so.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
3.80%
发文量
1027
审稿时长
3-6 weeks
期刊介绍: Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment. Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.
期刊最新文献
Evolutionary Histories of Camellia japonica and Camellia rusticana. From banks to burrows: Habitat preferences and nesting behaviours of platypuses in the Snowy River. Cameras or Camus? Comparing Snow Track Surveys and Camera Traps to Estimate Densities of Unmarked Wildlife Populations. Agriculture and Water Availability Show Contrasting Effects on Bats in a Mediterranean Island of Outstanding Chiropteran Biogeographical Value. Cryptic Hybridization Dynamics in a Three-Way Hybrid Zone of Dinopium Flamebacks on a Tropical Island.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1