Phivos Phylactou, Nikos Konstantinou, Edward F Ester
{"title":"Advancing working memory research through cortico-cortical transcranial magnetic stimulation.","authors":"Phivos Phylactou, Nikos Konstantinou, Edward F Ester","doi":"10.3389/fnhum.2024.1504783","DOIUrl":null,"url":null,"abstract":"<p><p>The neural underpinnings of working memory (WM) have been of continuous scientific interest for decades. As the understanding of WM progresses and new theories, such as the distributed view of WM, develop, the need to advance the methods used to study WM also arises. This perspective discusses how building from the state-of-the-art in the field of transcranial magnetic stimulation (TMS), and utilising cortico-cortical TMS, may pave the way for testing some of the predictions proposed by the distributed WM view. Further, after briefly discussing current barriers that need to be overcome for implementing cortico-cortical TMS for WM research, examples of how cortico-cortical TMS may be employed in the context of WM research are provided, guided by the ongoing debate on the sensory recruitment framework.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"18 ","pages":"1504783"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663928/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Human Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnhum.2024.1504783","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The neural underpinnings of working memory (WM) have been of continuous scientific interest for decades. As the understanding of WM progresses and new theories, such as the distributed view of WM, develop, the need to advance the methods used to study WM also arises. This perspective discusses how building from the state-of-the-art in the field of transcranial magnetic stimulation (TMS), and utilising cortico-cortical TMS, may pave the way for testing some of the predictions proposed by the distributed WM view. Further, after briefly discussing current barriers that need to be overcome for implementing cortico-cortical TMS for WM research, examples of how cortico-cortical TMS may be employed in the context of WM research are provided, guided by the ongoing debate on the sensory recruitment framework.
期刊介绍:
Frontiers in Human Neuroscience is a first-tier electronic journal devoted to understanding the brain mechanisms supporting cognitive and social behavior in humans, and how these mechanisms might be altered in disease states. The last 25 years have seen an explosive growth in both the methods and the theoretical constructs available to study the human brain. Advances in electrophysiological, neuroimaging, neuropsychological, psychophysical, neuropharmacological and computational approaches have provided key insights into the mechanisms of a broad range of human behaviors in both health and disease. Work in human neuroscience ranges from the cognitive domain, including areas such as memory, attention, language and perception to the social domain, with this last subject addressing topics, such as interpersonal interactions, social discourse and emotional regulation. How these processes unfold during development, mature in adulthood and often decline in aging, and how they are altered in a host of developmental, neurological and psychiatric disorders, has become increasingly amenable to human neuroscience research approaches. Work in human neuroscience has influenced many areas of inquiry ranging from social and cognitive psychology to economics, law and public policy. Accordingly, our journal will provide a forum for human research spanning all areas of human cognitive, social, developmental and translational neuroscience using any research approach.