EMATA: a toolbox for the automatic extraction and modeling of arterial inputs for tracer kinetic analysis in [18F]FDG brain studies.

IF 3 2区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING EJNMMI Physics Pub Date : 2024-12-24 DOI:10.1186/s40658-024-00707-2
Mattia De Francisci, Erica Silvestri, Andrea Bettinelli, Tommaso Volpi, Manu S Goyal, Andrei G Vlassenko, Diego Cecchin, Alessandra Bertoldo
{"title":"EMATA: a toolbox for the automatic extraction and modeling of arterial inputs for tracer kinetic analysis in [<sup>18</sup>F]FDG brain studies.","authors":"Mattia De Francisci, Erica Silvestri, Andrea Bettinelli, Tommaso Volpi, Manu S Goyal, Andrei G Vlassenko, Diego Cecchin, Alessandra Bertoldo","doi":"10.1186/s40658-024-00707-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>PET imaging is a pivotal tool for biomarker research aimed at personalized medicine. Leveraging the quantitative nature of PET requires knowledge of plasma radiotracer concentration. Typically, the arterial input function (AIF) is obtained through arterial cannulation, an invasive and technically demanding procedure. A less invasive alternative, especially for [<sup>18</sup>F]FDG, is the image-derived input function (IDIF), which, however, often requires correction for partial volume effect (PVE), usually performed via venous blood samples. The aim of this paper is to present EMATA: Extraction and Modeling of Arterial inputs for Tracer kinetic Analysis, an open-source MATLAB toolbox. EMATA automates IDIF extraction from [<sup>18</sup>F]FDG brain PET images and additionally includes a PVE correction procedure that does not require any blood sampling.</p><p><strong>Methods: </strong>To assess the toolbox generalizability and present example outputs, EMATA was applied to brain [<sup>18</sup>F]FDG dynamic data of 80 subjects, extracted from two distinct datasets (40 healthy controls, 40 glioma patients). Additionally, to compare with the reference standard, quantification using both IDIF and AIF was carried out on a third open-access dataset of 18 healthy individuals.</p><p><strong>Results: </strong>EMATA consistently performs IDIF extraction across all datasets, despite differences in scanners and acquisition protocols. Remarkably high agreement is observed when comparing Patlak's K<sub>i</sub> between IDIF and AIF (R<sup>2</sup>: 0.98 ± 0.02).</p><p><strong>Conclusion: </strong>EMATA proved adaptability to different datasets characteristics and the ability to provide arterial input functions that can be used for reliable PET quantitative analysis.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"105"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666860/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-024-00707-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: PET imaging is a pivotal tool for biomarker research aimed at personalized medicine. Leveraging the quantitative nature of PET requires knowledge of plasma radiotracer concentration. Typically, the arterial input function (AIF) is obtained through arterial cannulation, an invasive and technically demanding procedure. A less invasive alternative, especially for [18F]FDG, is the image-derived input function (IDIF), which, however, often requires correction for partial volume effect (PVE), usually performed via venous blood samples. The aim of this paper is to present EMATA: Extraction and Modeling of Arterial inputs for Tracer kinetic Analysis, an open-source MATLAB toolbox. EMATA automates IDIF extraction from [18F]FDG brain PET images and additionally includes a PVE correction procedure that does not require any blood sampling.

Methods: To assess the toolbox generalizability and present example outputs, EMATA was applied to brain [18F]FDG dynamic data of 80 subjects, extracted from two distinct datasets (40 healthy controls, 40 glioma patients). Additionally, to compare with the reference standard, quantification using both IDIF and AIF was carried out on a third open-access dataset of 18 healthy individuals.

Results: EMATA consistently performs IDIF extraction across all datasets, despite differences in scanners and acquisition protocols. Remarkably high agreement is observed when comparing Patlak's Ki between IDIF and AIF (R2: 0.98 ± 0.02).

Conclusion: EMATA proved adaptability to different datasets characteristics and the ability to provide arterial input functions that can be used for reliable PET quantitative analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EMATA:用于自动提取和建模动脉输入的工具箱,用于[18F]FDG脑研究中的示踪剂动力学分析。
目的:PET成像是针对个性化医疗的生物标志物研究的关键工具。利用PET的定量特性需要了解等离子体放射性示踪剂浓度。通常,动脉输入功能(AIF)是通过动脉插管获得的,这是一种侵入性和技术要求很高的手术。一种侵入性较小的替代方法,特别是对于[18F]FDG,是图像衍生输入函数(IDIF),然而,它通常需要对部分体积效应(PVE)进行校正,通常通过静脉血样本进行校正。本文的目的是介绍EMATA:用于示踪动力学分析的动脉输入的提取和建模,一个开源的MATLAB工具箱。EMATA自动从[18F]FDG脑PET图像中提取IDIF,另外还包括一个不需要任何血液采样的PVE校正程序。方法:为了评估工具箱的通用性和当前示例输出,将EMATA应用于从两个不同的数据集(40名健康对照组和40名胶质瘤患者)中提取的80名受试者的脑[18F]FDG动态数据。此外,为了与参考标准进行比较,使用IDIF和AIF对18名健康个体的第三个开放获取数据集进行量化。结果:尽管扫描仪和采集协议存在差异,但EMATA始终在所有数据集上执行IDIF提取。在比较IDIF和AIF之间的Patlak’s Ki时,观察到非常高的一致性(R2: 0.98±0.02)。结论:EMATA证明了对不同数据集特征的适应性和提供动脉输入功能的能力,可用于可靠的PET定量分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EJNMMI Physics
EJNMMI Physics Physics and Astronomy-Radiation
CiteScore
6.70
自引率
10.00%
发文量
78
审稿时长
13 weeks
期刊介绍: EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.
期刊最新文献
Correction: Radiopharmacokinetic modelling and radiation dose assessment of 223Ra used for treatment of metastatic castration-resistant prostate cancer. Exhalation of Rn-219 by patients treated with Radium-223. Quantitative accuracy of preclinical in ovo PET/MRI: influence of attenuation and quantification methods. AI-based automatic patient positioning in a digital-BGO PET/CT scanner: efficacy and impact. On the Effect of the Patient Table on Attenuation in Myocardial Perfusion Imaging SPECT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1