Wilson Román Acevedo, Myriam H Aguirre, Diego Rubi
{"title":"Electrically-driven control of nanoscale chemical changes in amorphous complex oxide memristive devices.","authors":"Wilson Román Acevedo, Myriam H Aguirre, Diego Rubi","doi":"10.1088/1361-6528/ada297","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we investigate the electrical response response of amorphous complex oxide memristors under different electrical stimulation. With the help of transmission electron microscopy and energy dispersive x-ray spectroscopy, we observed that those devices stimulated with voltage display strong cationic segregation at the nanoscale together with the partial crystallization of the oxide layer. On the other hand, devices stimulated with current maintain their amorphous character with no significative chemical changes. Our analysis also shows that current stimulation leads to a more stable memristive response with smaller cycle-to-cycle variations. These findings could contribute to the design of more reliable oxide-based memristors and underscore the crucial effect that has type of electrical stimulation applied to the devices has on their integrity and reliability.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ada297","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we investigate the electrical response response of amorphous complex oxide memristors under different electrical stimulation. With the help of transmission electron microscopy and energy dispersive x-ray spectroscopy, we observed that those devices stimulated with voltage display strong cationic segregation at the nanoscale together with the partial crystallization of the oxide layer. On the other hand, devices stimulated with current maintain their amorphous character with no significative chemical changes. Our analysis also shows that current stimulation leads to a more stable memristive response with smaller cycle-to-cycle variations. These findings could contribute to the design of more reliable oxide-based memristors and underscore the crucial effect that has type of electrical stimulation applied to the devices has on their integrity and reliability.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.