{"title":"CRISPR-Cas13a Targeting the FGFR3-TACC3 Fusion Gene Inhibits Proliferation of Bladder Cancer Cells in vitro and in vivo.","authors":"Yadong Wang, Jinjin Zhu, Shangwen Liu, Zhengbo Sun, Guibiao Wen, Dakun Huang, Mianxiong Chen, Yuchen Liu, Feng Lin","doi":"10.2147/OTT.S492659","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The FGFR3-TACC3 fusion gene exists in a variety of malignant tumors, including bladder cancer. In our ongoing research on the CRISPR-Cas13a gene-editing system, we reported the use of CRISPR-Cas13a gene-editing system to knockout FGFR3-TACC3 and inhibit the proliferation of bladder tumor cells.</p><p><strong>Purpose: </strong> This study aimed to use the CRISPR-Cas13a gene-editing system to target the FGFR3-TACC3 fusion gene in bladder cancer cells, which has the potential to be a new and effective treatment for bladder cancer.</p><p><strong>Materials and methods: </strong>The efficacy of the CRISPR-Cas13a gene-editing system was analysed by qRT-PCR. The inhibitory effects of Cas13a-mediated knockdown of the FGFR3-TACC3 fusion gene on the proliferation of RT4 and RT112 cell lines were assessed utilizing CCK-8, EdU, and organoid formation assays. Subsequently, the comparative tumorigenic capability of RT4 cells with FGFR3-TACC3 knockdown achieved by Cas13a was examined in a nude mouse model.</p><p><strong>Results: </strong>At the cellular level, the comparative analysis of FGFR3-TACC3 knockdown efficacy between CRISPR-Cas13a and shRNA revealed a more pronounced reduction with the former. This knockdown effectively curtailed cellular proliferation, with CRISPR-Cas13a-mediated knockdown exhibiting a superior inhibitory effect over shRNA-mediated knockdown. In organoid cultures derived from RT4 cells, a similar trend was observed, with Cas13a-mediated knockdown of FGFR3-TACC3 leading to a more substantial suppression of proliferation compared to shRNA-mediated knockdown. In vivo tumor models corroborated these findings, demonstrating a significantly diminished tumor volume in the Cas13a-treated cohort relative to both the control and shRNA-treated groups.</p><p><strong>Conclusion: </strong>The CRISPR-Cas13a gene-editing system has been demonstrated to significantly suppress tumor proliferation both in vitro and in vivo, thereby presenting itself as a promising candidate for a novel and efficacious therapeutic intervention in bladder cancer treatment.</p>","PeriodicalId":19534,"journal":{"name":"OncoTargets and therapy","volume":"17 ","pages":"1197-1207"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664097/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OncoTargets and therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/OTT.S492659","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The FGFR3-TACC3 fusion gene exists in a variety of malignant tumors, including bladder cancer. In our ongoing research on the CRISPR-Cas13a gene-editing system, we reported the use of CRISPR-Cas13a gene-editing system to knockout FGFR3-TACC3 and inhibit the proliferation of bladder tumor cells.
Purpose: This study aimed to use the CRISPR-Cas13a gene-editing system to target the FGFR3-TACC3 fusion gene in bladder cancer cells, which has the potential to be a new and effective treatment for bladder cancer.
Materials and methods: The efficacy of the CRISPR-Cas13a gene-editing system was analysed by qRT-PCR. The inhibitory effects of Cas13a-mediated knockdown of the FGFR3-TACC3 fusion gene on the proliferation of RT4 and RT112 cell lines were assessed utilizing CCK-8, EdU, and organoid formation assays. Subsequently, the comparative tumorigenic capability of RT4 cells with FGFR3-TACC3 knockdown achieved by Cas13a was examined in a nude mouse model.
Results: At the cellular level, the comparative analysis of FGFR3-TACC3 knockdown efficacy between CRISPR-Cas13a and shRNA revealed a more pronounced reduction with the former. This knockdown effectively curtailed cellular proliferation, with CRISPR-Cas13a-mediated knockdown exhibiting a superior inhibitory effect over shRNA-mediated knockdown. In organoid cultures derived from RT4 cells, a similar trend was observed, with Cas13a-mediated knockdown of FGFR3-TACC3 leading to a more substantial suppression of proliferation compared to shRNA-mediated knockdown. In vivo tumor models corroborated these findings, demonstrating a significantly diminished tumor volume in the Cas13a-treated cohort relative to both the control and shRNA-treated groups.
Conclusion: The CRISPR-Cas13a gene-editing system has been demonstrated to significantly suppress tumor proliferation both in vitro and in vivo, thereby presenting itself as a promising candidate for a novel and efficacious therapeutic intervention in bladder cancer treatment.
期刊介绍:
OncoTargets and Therapy is an international, peer-reviewed journal focusing on molecular aspects of cancer research, that is, the molecular diagnosis of and targeted molecular or precision therapy for all types of cancer.
The journal is characterized by the rapid reporting of high-quality original research, basic science, reviews and evaluations, expert opinion and commentary that shed novel insight on a cancer or cancer subtype.
Specific topics covered by the journal include:
-Novel therapeutic targets and innovative agents
-Novel therapeutic regimens for improved benefit and/or decreased side effects
-Early stage clinical trials
Further considerations when submitting to OncoTargets and Therapy:
-Studies containing in vivo animal model data will be considered favorably.
-Tissue microarray analyses will not be considered except in cases where they are supported by comprehensive biological studies involving multiple cell lines.
-Biomarker association studies will be considered only when validated by comprehensive in vitro data and analysis of human tissue samples.
-Studies utilizing publicly available data (e.g. GWAS/TCGA/GEO etc.) should add to the body of knowledge about a specific disease or relevant phenotype and must be validated using the authors’ own data through replication in an independent sample set and functional follow-up.
-Bioinformatics studies must be validated using the authors’ own data through replication in an independent sample set and functional follow-up.
-Single nucleotide polymorphism (SNP) studies will not be considered.