Detection of the nuclear translocation of androgen receptor using quantitative and automatic cell imaging analysis.

IF 2.7 4区 生物学 Q1 ANATOMY & MORPHOLOGY Tissue & cell Pub Date : 2024-12-10 DOI:10.1016/j.tice.2024.102631
Lanlan Bai, Tao Wu, Mizuki Fukasawa, Sayo Kashiwagi, Haruka Tate, Taku Ozaki, Eriko Sugano, Hiroshi Tomita, Tsuyoshi Ishii, Takuya Akashi, Tomokazu Fukuda
{"title":"Detection of the nuclear translocation of androgen receptor using quantitative and automatic cell imaging analysis.","authors":"Lanlan Bai, Tao Wu, Mizuki Fukasawa, Sayo Kashiwagi, Haruka Tate, Taku Ozaki, Eriko Sugano, Hiroshi Tomita, Tsuyoshi Ishii, Takuya Akashi, Tomokazu Fukuda","doi":"10.1016/j.tice.2024.102631","DOIUrl":null,"url":null,"abstract":"<p><p>Testosterone signaling mediates diseases such as androgenetic alopecia and prostate cancer and is controlled by the activation of the androgen receptor (AR) and nuclear translocation of the ligand-receptor complex. This study established an immortalized dermal papilla cell line that stably expresses the AR labeled with a monomeric green fluorescence marker. The cells expressed the histone H2B protein as visualized using a red fluorescence marker, enabling the Detection of nuclear translocation under live cell conditions using image analysis. The AR was observed to be translocated from the cytoplasm to the nucleus of cells after stimulation with dihydrotestosterone (DHT). The signal intensity of the nuclear/cytoplasm ratio was analyzed using automatic image analysis and a newly developed algorithm. The quantitation method to detect nuclear translocation revealed that the AR nuclear signal plateaued approximately 20 min after DHT exposure. Our developed method has the potential to save human labor by the automatic process of the image.</p>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"93 ","pages":"102631"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tice.2024.102631","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Testosterone signaling mediates diseases such as androgenetic alopecia and prostate cancer and is controlled by the activation of the androgen receptor (AR) and nuclear translocation of the ligand-receptor complex. This study established an immortalized dermal papilla cell line that stably expresses the AR labeled with a monomeric green fluorescence marker. The cells expressed the histone H2B protein as visualized using a red fluorescence marker, enabling the Detection of nuclear translocation under live cell conditions using image analysis. The AR was observed to be translocated from the cytoplasm to the nucleus of cells after stimulation with dihydrotestosterone (DHT). The signal intensity of the nuclear/cytoplasm ratio was analyzed using automatic image analysis and a newly developed algorithm. The quantitation method to detect nuclear translocation revealed that the AR nuclear signal plateaued approximately 20 min after DHT exposure. Our developed method has the potential to save human labor by the automatic process of the image.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用定量和自动细胞成像分析检测雄激素受体的核易位。
睾酮信号传导介导雄激素性脱发和前列腺癌等疾病,并由雄激素受体(AR)的激活和配体受体复合物的核易位控制。本研究建立了一种永生化的真皮乳头细胞系,该细胞系稳定表达了单体绿色荧光标记的AR。使用红色荧光标记显示,细胞表达组蛋白H2B蛋白,可以使用图像分析检测活细胞条件下的核易位。在双氢睾酮(DHT)刺激后,观察到AR从细胞质转移到细胞核。采用自动图像分析和一种新算法分析核/细胞质比的信号强度。检测核易位的定量方法显示,暴露于DHT后,AR核信号趋于稳定约20 min。我们开发的方法具有通过自动处理图像来节省人力的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tissue & cell
Tissue & cell 医学-解剖学与形态学
CiteScore
3.90
自引率
0.00%
发文量
234
期刊介绍: Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed. Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.
期刊最新文献
Resilience in adversity: Exploring adaptive changes in cancer cells under stress. High expression of SERPINE1 and CTSL in keratinocytes in pressure injury caused by ischemia-reperfusion injury. Impact of smoking on oral mucosa: A cytological and cellular proliferation study. Acceleration of bone healing by a growth factor-releasing allo-hybrid graft. The effects of autophagy-modifying drugs chloroquine and lithium on the skin melanoma microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1