Estimation of the spatial variability of the New England Mud Patch geoacoustic properties using a distributed array of hydrophones and deep learninga).

IF 2.1 2区 物理与天体物理 Q2 ACOUSTICS Journal of the Acoustical Society of America Pub Date : 2024-12-01 DOI:10.1121/10.0034707
Ariel Vardi, Peter H Dahl, David Dall'Osto, David Knobles, Preston Wilson, John Leonard, Julien Bonnel
{"title":"Estimation of the spatial variability of the New England Mud Patch geoacoustic properties using a distributed array of hydrophones and deep learninga).","authors":"Ariel Vardi, Peter H Dahl, David Dall'Osto, David Knobles, Preston Wilson, John Leonard, Julien Bonnel","doi":"10.1121/10.0034707","DOIUrl":null,"url":null,"abstract":"<p><p>This article presents a spatial environmental inversion scheme using broadband impulse signals with deep learning (DL) to model a single spatially-varying sediment layer over a fixed basement. The method is applied to data from the Seabed Characterization Experiment 2022 (SBCEX22) in the New England Mud-Patch (NEMP). Signal Underwater Sound (SUS) explosive charges generated impulsive signals recorded by a distributed array of bottom-moored hydrophones. The inversion scheme is first validated on a range-dependent synthetic test set simulating SBCEX22 conditions, then applied to experimental data to predict the lateral spatial structure of sediment sound speed and its ratio with the interfacial water sound speed. Traditional geoacoustic inversion requires significant computational resources. Here, a neural network enables rapid single-signal inversion, allowing the processing of 1836 signals along 722 tracks. The method is applied to both synthetic and experimental data. Results from experimental data suggest an increase in both absolute compressional sound speed and sound speed ratio from southwest to northeast in the NEMP, consistent with published coring surveys and geoacoustic inversion results. This approach demonstrates the potential of DL for efficient spatial geoacoustic inversion in shallow water environments.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 6","pages":"4229-4241"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0034707","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a spatial environmental inversion scheme using broadband impulse signals with deep learning (DL) to model a single spatially-varying sediment layer over a fixed basement. The method is applied to data from the Seabed Characterization Experiment 2022 (SBCEX22) in the New England Mud-Patch (NEMP). Signal Underwater Sound (SUS) explosive charges generated impulsive signals recorded by a distributed array of bottom-moored hydrophones. The inversion scheme is first validated on a range-dependent synthetic test set simulating SBCEX22 conditions, then applied to experimental data to predict the lateral spatial structure of sediment sound speed and its ratio with the interfacial water sound speed. Traditional geoacoustic inversion requires significant computational resources. Here, a neural network enables rapid single-signal inversion, allowing the processing of 1836 signals along 722 tracks. The method is applied to both synthetic and experimental data. Results from experimental data suggest an increase in both absolute compressional sound speed and sound speed ratio from southwest to northeast in the NEMP, consistent with published coring surveys and geoacoustic inversion results. This approach demonstrates the potential of DL for efficient spatial geoacoustic inversion in shallow water environments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用分布式水听器阵列和深度学习估算新英格兰泥块地质声学特性的空间变异性a)。
本文提出了一种利用宽带脉冲信号和深度学习(DL)来模拟固定基底上单个空间变化沉积层的空间环境反演方案。该方法应用于新英格兰泥地(NEMP)海底表征实验2022 (SBCEX22)的数据。信号水声(SUS)爆炸药产生脉冲信号,由分布式底系泊水听器阵列记录。首先在模拟SBCEX22条件的距离相关综合试验集上对反演方案进行了验证,然后将其应用于实验数据,预测了沉积物声速的横向空间结构及其与界面水声速的比值。传统的地球声反演需要大量的计算资源。在这里,一个神经网络可以实现快速的单信号反演,允许沿着722条轨道处理1836个信号。该方法适用于合成数据和实验数据。实验数据表明,NEMP的绝对压缩声速和声速比从西南向东北增加,与已发表的取心调查和地球声学反演结果一致。这种方法证明了DL在浅水环境中有效的空间地球声反演的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
16.70%
发文量
1433
审稿时长
4.7 months
期刊介绍: Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.
期刊最新文献
All we know about anechoic chambers. Temporal patterns in Malaysian rainforest soundscapes demonstrated using acoustic indices and deep embeddings trained on time-of-day estimationa). Validation of a three-dimensional model for improving the design of multiple-backscattering ultrasonic sensors. A combined noise source model based on vertical coherence to quantify the proportions of two types of noise power. A small cavity for detecting sound-induced flow.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1