Age-related differences in gene expression and pathway activation following heat stroke.

IF 2.5 4区 生物学 Q3 CELL BIOLOGY Physiological genomics Pub Date : 2024-12-24 DOI:10.1152/physiolgenomics.00053.2024
Maria Gomez, Saeed Al Mahri, Mashan Abdullah, Shuja Shafi Malik, Saber Yezli, Yara Yassin, Anas Khan, Cynthia Lehe, Sameer Mohammad, Robert Hoehndorf, Abderrezak Bouchama
{"title":"Age-related differences in gene expression and pathway activation following heat stroke.","authors":"Maria Gomez, Saeed Al Mahri, Mashan Abdullah, Shuja Shafi Malik, Saber Yezli, Yara Yassin, Anas Khan, Cynthia Lehe, Sameer Mohammad, Robert Hoehndorf, Abderrezak Bouchama","doi":"10.1152/physiolgenomics.00053.2024","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the molecular responses to heat stroke in young and old patients by comparing whole-genome transcriptomes between age groups. We analyzed transcriptomic profiles from patients categorized into two age-defined cohorts: young (mean age = 44.9 ± 6 years) and old (mean age = 66.1 ± 4 years). Control subjects, exposed to similar environmental heat conditions but without developing heat stroke, were also included in the analysis to provide a baseline for comparison. Despite uniform heat stroke severity at admission, as indicated by core body temperature, consciousness level, and organ damage markers, notable gene expression differences emerged. Old patients showed 37% fewer differentially expressed genes compared to young patients at admission, with a shift towards gene upregulation, deviating from the usual downregulation seen in heat stress responses. Both age groups exhibited increased heat shock protein gene expression, activated the heat stress and unfolded protein responses indicating comparable proteotoxic stress. Nonetheless, age-specific differences were evident in critical regulatory pathways like Sirtuin, mTOR, and p53 signaling, along with key pathways related to proteostasis, energy metabolism, oxidative stress, and immune responses. Following cooling, older adults exhibited a decline in the heat stress response and a cessation of the unfolded protein response, in contrast to the sustained responses seen in younger individuals. This pattern suggests an age-related adaptability or a diminished protective response capacity with aging. These findings provide insights into the biological mechanisms that may contribute to age-specific vulnerabilities to heat.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00053.2024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the molecular responses to heat stroke in young and old patients by comparing whole-genome transcriptomes between age groups. We analyzed transcriptomic profiles from patients categorized into two age-defined cohorts: young (mean age = 44.9 ± 6 years) and old (mean age = 66.1 ± 4 years). Control subjects, exposed to similar environmental heat conditions but without developing heat stroke, were also included in the analysis to provide a baseline for comparison. Despite uniform heat stroke severity at admission, as indicated by core body temperature, consciousness level, and organ damage markers, notable gene expression differences emerged. Old patients showed 37% fewer differentially expressed genes compared to young patients at admission, with a shift towards gene upregulation, deviating from the usual downregulation seen in heat stress responses. Both age groups exhibited increased heat shock protein gene expression, activated the heat stress and unfolded protein responses indicating comparable proteotoxic stress. Nonetheless, age-specific differences were evident in critical regulatory pathways like Sirtuin, mTOR, and p53 signaling, along with key pathways related to proteostasis, energy metabolism, oxidative stress, and immune responses. Following cooling, older adults exhibited a decline in the heat stress response and a cessation of the unfolded protein response, in contrast to the sustained responses seen in younger individuals. This pattern suggests an age-related adaptability or a diminished protective response capacity with aging. These findings provide insights into the biological mechanisms that may contribute to age-specific vulnerabilities to heat.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiological genomics
Physiological genomics 生物-生理学
CiteScore
6.10
自引率
0.00%
发文量
46
审稿时长
4-8 weeks
期刊介绍: The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.
期刊最新文献
Integrated Analysis of Methylome and Transcriptome Responses to Exercise Training in Children with Overweight/Obesity. Maternal-fetal interfaces transcriptome changes associated with placental insufficiency and a novel gene therapy intervention. MYL9 binding with MYO19 suppresses epithelial-mesenchymal transition in non-small-cell lung cancer. Age-related differences in gene expression and pathway activation following heat stroke. Physiological, biochemical and genome-wide expression patterns during graded normobaric hypoxia in healthy individuals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1