Recent advancements in ultrasound-assisted biomolecule extraction from prokaryotic and eukaryotic cells: a review.

IF 2 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS Preparative Biochemistry & Biotechnology Pub Date : 2024-12-24 DOI:10.1080/10826068.2024.2436952
Santosh Sethi, V K Rathod
{"title":"Recent advancements in ultrasound-assisted biomolecule extraction from prokaryotic and eukaryotic cells: a review.","authors":"Santosh Sethi, V K Rathod","doi":"10.1080/10826068.2024.2436952","DOIUrl":null,"url":null,"abstract":"<p><p>With numerous advantages over conventional techniques, ultrasound-assisted extraction (UAE) has become a viable method for the effective extraction of biomolecules from prokaryotic and eukaryotic cells. The fundamentals and workings of UAE are examined in this review, focusing on current developments, including how these impact the extraction of proteins, lipids, enzymes, and other bioactive compounds. UAE not only enhances cell disruption and mass transfer, leading to improved extraction yields, but also preserves the integrity of the extracted bioactive molecules under optimized conditions, making it a preferred choice in Biochemistry and Biotechnology. Additionally, this review explores recent innovative approaches that combine ultrasound with other techniques like enzymatic digestion, supercritical CO<sub>2</sub>, deep eutectic solvents, and Three-Phase Partitioning (UA-TPP) etc, to further enhance extraction efficiency. The differences in extraction effectiveness between prokaryotic and eukaryotic cells are attributed to cellular structure and ultrasonic conditions. Overall, this review highlights UAE's promise as a viable and efficient substitute for biomolecule extraction concerning prokaryotic and eukaryotic cells while bringing up areas that need additional research and development.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-27"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10826068.2024.2436952","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

With numerous advantages over conventional techniques, ultrasound-assisted extraction (UAE) has become a viable method for the effective extraction of biomolecules from prokaryotic and eukaryotic cells. The fundamentals and workings of UAE are examined in this review, focusing on current developments, including how these impact the extraction of proteins, lipids, enzymes, and other bioactive compounds. UAE not only enhances cell disruption and mass transfer, leading to improved extraction yields, but also preserves the integrity of the extracted bioactive molecules under optimized conditions, making it a preferred choice in Biochemistry and Biotechnology. Additionally, this review explores recent innovative approaches that combine ultrasound with other techniques like enzymatic digestion, supercritical CO2, deep eutectic solvents, and Three-Phase Partitioning (UA-TPP) etc, to further enhance extraction efficiency. The differences in extraction effectiveness between prokaryotic and eukaryotic cells are attributed to cellular structure and ultrasonic conditions. Overall, this review highlights UAE's promise as a viable and efficient substitute for biomolecule extraction concerning prokaryotic and eukaryotic cells while bringing up areas that need additional research and development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Preparative Biochemistry & Biotechnology
Preparative Biochemistry & Biotechnology 工程技术-生化研究方法
CiteScore
4.90
自引率
3.40%
发文量
98
审稿时长
2 months
期刊介绍: Preparative Biochemistry & Biotechnology is an international forum for rapid dissemination of high quality research results dealing with all aspects of preparative techniques in biochemistry, biotechnology and other life science disciplines.
期刊最新文献
Recent advancements in ultrasound-assisted biomolecule extraction from prokaryotic and eukaryotic cells: a review. Efficient RNA extraction method for acquiring high-quality RNA from various tissues of the fiber crop abaca, Musa textilis Née. Harnessing algal biomass for sustainable energy: cultivation, strain improvement, and biofuel production. Engineering Escherichia coli to metabolize sorbitol as the sole carbon source for synthesis of recombinant L-Asparaginase-II. Optimal fermentation of Pseudomonas synxantha M1 and metabolomics analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1