Identification of genetic loci for seed shattering in Italian ryegrass (Lolium multiflorum Lam.).

IF 4.4 1区 农林科学 Q1 AGRONOMY Theoretical and Applied Genetics Pub Date : 2024-12-24 DOI:10.1007/s00122-024-04801-y
Ken-Ichi Tamura, Tatsumi Mizubayashi, Hiromoto Yamakawa, Takafumi Yamaguchi
{"title":"Identification of genetic loci for seed shattering in Italian ryegrass (Lolium multiflorum Lam.).","authors":"Ken-Ichi Tamura, Tatsumi Mizubayashi, Hiromoto Yamakawa, Takafumi Yamaguchi","doi":"10.1007/s00122-024-04801-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>We have identified a unique genetic locus for seed shattering in Italian ryegrass that has an exceedingly large effect and shows partial dominance for reduced seed shattering. Genetic improvement of seed retention in forage grasses can contribute to improving their commercial seed production. The objective of this study was to identify the genetic loci responsible for seed shattering in Italian ryegrass (Lolium multiflorum Lam.) using F<sub>2</sub> and F<sub>3</sub> progeny from a cross between a reduced shattering genotype and a self-fertile shattering genotype. High negative correlations (- 0.622 in F<sub>2</sub> and - 0.737 in F<sub>3</sub>) were found between two methods of measuring shattering: (1) the percentage of seed shattering obtained by manually stripping the spike and (2) the non-basal floret breaking tensile strength (BTS). On the other hand, basal floret BTS showed a non-significant (F<sub>2</sub>) or low (- 0.226 in F<sub>3</sub>) correlation with the percentage of seed shattering by stripping. We identified a quantitative trait locus (QTL) near the start of linkage group 2, designated as qSH2.1, which was associated with both seed shattering measured by stripping and non-basal floret BTS with exceptionally high LOD values (11.0-34.0); in addition, we detected five minor QTLs. qSH2.1 explained about 2/3 of the total variation in the percentage of seed shattering by stripping at the late dough stage in the F<sub>2</sub> population. The reduced shattering trait was partially dominant, in contrast to the genetic mode in many previous reports on other crops. Candidate orthologs for the previously reported seed shattering genes were not found near the qSH2.1 locus in the ryegrass genome, suggesting that this QTL may be due to a yet-undiscovered gene.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 1","pages":"11"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-024-04801-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Key message: We have identified a unique genetic locus for seed shattering in Italian ryegrass that has an exceedingly large effect and shows partial dominance for reduced seed shattering. Genetic improvement of seed retention in forage grasses can contribute to improving their commercial seed production. The objective of this study was to identify the genetic loci responsible for seed shattering in Italian ryegrass (Lolium multiflorum Lam.) using F2 and F3 progeny from a cross between a reduced shattering genotype and a self-fertile shattering genotype. High negative correlations (- 0.622 in F2 and - 0.737 in F3) were found between two methods of measuring shattering: (1) the percentage of seed shattering obtained by manually stripping the spike and (2) the non-basal floret breaking tensile strength (BTS). On the other hand, basal floret BTS showed a non-significant (F2) or low (- 0.226 in F3) correlation with the percentage of seed shattering by stripping. We identified a quantitative trait locus (QTL) near the start of linkage group 2, designated as qSH2.1, which was associated with both seed shattering measured by stripping and non-basal floret BTS with exceptionally high LOD values (11.0-34.0); in addition, we detected five minor QTLs. qSH2.1 explained about 2/3 of the total variation in the percentage of seed shattering by stripping at the late dough stage in the F2 population. The reduced shattering trait was partially dominant, in contrast to the genetic mode in many previous reports on other crops. Candidate orthologs for the previously reported seed shattering genes were not found near the qSH2.1 locus in the ryegrass genome, suggesting that this QTL may be due to a yet-undiscovered gene.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
意大利黑麦草(Lolium multiflorum Lam.)落粒遗传位点的鉴定。
关键信息:我们在意大利黑麦草中发现了一个独特的落粒遗传位点,它对减少落粒具有非常大的影响,并显示出部分优势。饲草种子保留力的遗传改良有助于提高其商品种子产量。本研究的目的是利用意大利黑麦草(Lolium multiflorum Lam.)减少落粒基因型与自育落粒基因型杂交的F2和F3后代,确定与落粒有关的遗传位点。两种测量碎裂的方法之间存在高度负相关(F2为- 0.622,F3为- 0.737):(1)人工剥穗获得的种子碎裂百分比和(2)非基部小花断裂拉伸强度(BTS)。另一方面,基小花BTS与剥粒率呈不显著(F2)或低(F3为- 0.226)相关。我们在连锁组2开始附近发现了一个qSH2.1的数量性状位点(QTL),该位点与剥离法测定的种子碎裂和非基小花BTS均相关,且LOD值异常高(11.0 ~ 34.0);此外,我们还检测到5个次要qtl。qSH2.1解释了F2群体生面团后期脱粒率总变异的2/3左右。与以往报道的其他作物的遗传模式相反,碎粒减少性状是部分显性的。在黑麦草基因组qSH2.1位点附近未发现先前报道的种子破碎基因的候选同源物,这表明该QTL可能是由一个尚未发现的基因引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
7.40%
发文量
241
审稿时长
2.3 months
期刊介绍: Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.
期刊最新文献
BrCYP71 mutation resulted in stay-green in pak choi (Brassica rapa L. ssp. chinensis). Comparative genomic prediction of resistance to Fusarium wilt (Fusarium oxysporum f. sp. niveum race 2) in watermelon: parametric and nonparametric approaches. Analysis of the genetic basis of fiber-related traits and flowering time in upland cotton using machine learning. Genetic dissection of foxtail millet bristles using combined QTL mapping and RNA-seq. Genomic selection shows improved expected genetic gain over phenotypic selection of agronomic traits in allotetraploid white clover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1