Analysis of the genetic basis of fiber-related traits and flowering time in upland cotton using machine learning.

IF 4.4 1区 农林科学 Q1 AGRONOMY Theoretical and Applied Genetics Pub Date : 2025-01-24 DOI:10.1007/s00122-025-04821-2
Weinan Li, Mingjun Zhang, Jingchao Fan, Zhaoen Yang, Jun Peng, Jianhua Zhang, Yubin Lan, Mao Chai
{"title":"Analysis of the genetic basis of fiber-related traits and flowering time in upland cotton using machine learning.","authors":"Weinan Li, Mingjun Zhang, Jingchao Fan, Zhaoen Yang, Jun Peng, Jianhua Zhang, Yubin Lan, Mao Chai","doi":"10.1007/s00122-025-04821-2","DOIUrl":null,"url":null,"abstract":"<p><p>Cotton is an important crop for fiber production, but the genetic basis underlying key agronomic traits, such as fiber quality and flowering days, remains complex. While machine learning (ML) has shown great potential in uncovering the genetic architecture of complex traits in other crops, its application in cotton has been limited. Here, we applied five machine learning models-AdaBoost, Gradient Boosting Regressor, LightGBM, Random Forest, and XGBoost-to identify loci associated with fiber quality and flowering days in cotton. We compared two SNP dataset down-sampling methods for model training and found that selecting SNPs with an Fscale value greater than 0 outperformed randomly selected SNPs in terms of model accuracy. We further performed machine learning quantitative trait loci (mlQTLs) analysis for 13 traits related to fiber quality and flowering days. These mlQTLs were then compared to those identified through genome-wide association studies (GWAS), revealing that the machine learning approach not only confirmed known loci but also identified novel QTLs. Additionally, we evaluated the effect of population size on model accuracy and found that larger population sizes resulted in better predictive performance. Finally, we proposed candidate genes for the identified mlQTLs, including two argonaute 5 proteins, Gh_A09G104100 and Gh_A09G104400, for the FL3/FS2 locus, as well as GhFLA17 and Syntaxin-121 (Gh_D09G143700) for the FSD09_2/FED09_2 locus. Our findings demonstrate the efficacy of machine learning in enhancing the identification of genetic loci in cotton, providing valuable insights for improving cotton breeding strategies.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 1","pages":"36"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-025-04821-2","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Cotton is an important crop for fiber production, but the genetic basis underlying key agronomic traits, such as fiber quality and flowering days, remains complex. While machine learning (ML) has shown great potential in uncovering the genetic architecture of complex traits in other crops, its application in cotton has been limited. Here, we applied five machine learning models-AdaBoost, Gradient Boosting Regressor, LightGBM, Random Forest, and XGBoost-to identify loci associated with fiber quality and flowering days in cotton. We compared two SNP dataset down-sampling methods for model training and found that selecting SNPs with an Fscale value greater than 0 outperformed randomly selected SNPs in terms of model accuracy. We further performed machine learning quantitative trait loci (mlQTLs) analysis for 13 traits related to fiber quality and flowering days. These mlQTLs were then compared to those identified through genome-wide association studies (GWAS), revealing that the machine learning approach not only confirmed known loci but also identified novel QTLs. Additionally, we evaluated the effect of population size on model accuracy and found that larger population sizes resulted in better predictive performance. Finally, we proposed candidate genes for the identified mlQTLs, including two argonaute 5 proteins, Gh_A09G104100 and Gh_A09G104400, for the FL3/FS2 locus, as well as GhFLA17 and Syntaxin-121 (Gh_D09G143700) for the FSD09_2/FED09_2 locus. Our findings demonstrate the efficacy of machine learning in enhancing the identification of genetic loci in cotton, providing valuable insights for improving cotton breeding strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
7.40%
发文量
241
审稿时长
2.3 months
期刊介绍: Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.
期刊最新文献
BrCYP71 mutation resulted in stay-green in pak choi (Brassica rapa L. ssp. chinensis). Comparative genomic prediction of resistance to Fusarium wilt (Fusarium oxysporum f. sp. niveum race 2) in watermelon: parametric and nonparametric approaches. Analysis of the genetic basis of fiber-related traits and flowering time in upland cotton using machine learning. Genetic dissection of foxtail millet bristles using combined QTL mapping and RNA-seq. Genomic selection shows improved expected genetic gain over phenotypic selection of agronomic traits in allotetraploid white clover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1