Emile Gluck-Thaler, Muhammad Arsam Shaikh, Corlett W Wood
{"title":"Multivariate Divergence in Wild Microbes: No Evidence for Evolution along a Genetic Line of Least Resistance.","authors":"Emile Gluck-Thaler, Muhammad Arsam Shaikh, Corlett W Wood","doi":"10.1086/733184","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractTrait evolution depends both on the direct fitness effects of specific traits and on indirect selection arising from genetically correlated traits. Although well established in plants and animals, the role of trait correlations in microbial evolution remains a major open question. Here, we tested whether genetic correlations in a suite of metabolic traits are conserved between two sister lineages of fungal endophytes and whether phenotypic divergence between lineages occurred in the direction of the multivariate trait combination containing the most genetic variance within lineages (i.e., the genetic lines of least resistance). We found that while one lineage grew faster across nearly all substrates, lineages differed in their mean response to specific substrates and in their overall multivariate metabolic trait means. The structure of the genetic variance-covariance (<b>G</b>) matrix was conserved between lineages, yet to our surprise divergence in metabolic phenotypes between lineages was nearly orthogonal to the major axis of genetic variation within lineages, indicating that divergence did not occur along the genetic lines of least resistance. Our findings suggest that the evolutionary genetics of trait correlations in microorganisms warrant further research and highlight the extensive functional variation that exists at very fine taxonomic scales in host-associated microbial communities.</p>","PeriodicalId":50800,"journal":{"name":"American Naturalist","volume":"205 1","pages":"107-124"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Naturalist","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1086/733184","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractTrait evolution depends both on the direct fitness effects of specific traits and on indirect selection arising from genetically correlated traits. Although well established in plants and animals, the role of trait correlations in microbial evolution remains a major open question. Here, we tested whether genetic correlations in a suite of metabolic traits are conserved between two sister lineages of fungal endophytes and whether phenotypic divergence between lineages occurred in the direction of the multivariate trait combination containing the most genetic variance within lineages (i.e., the genetic lines of least resistance). We found that while one lineage grew faster across nearly all substrates, lineages differed in their mean response to specific substrates and in their overall multivariate metabolic trait means. The structure of the genetic variance-covariance (G) matrix was conserved between lineages, yet to our surprise divergence in metabolic phenotypes between lineages was nearly orthogonal to the major axis of genetic variation within lineages, indicating that divergence did not occur along the genetic lines of least resistance. Our findings suggest that the evolutionary genetics of trait correlations in microorganisms warrant further research and highlight the extensive functional variation that exists at very fine taxonomic scales in host-associated microbial communities.
期刊介绍:
Since its inception in 1867, The American Naturalist has maintained its position as one of the world''s premier peer-reviewed publications in ecology, evolution, and behavior research. Its goals are to publish articles that are of broad interest to the readership, pose new and significant problems, introduce novel subjects, develop conceptual unification, and change the way people think. AmNat emphasizes sophisticated methodologies and innovative theoretical syntheses—all in an effort to advance the knowledge of organic evolution and other broad biological principles.