Automated pediatric brain tumor imaging assessment tool from CBTN: Enhancing suprasellar region inclusion and managing limited data with deep learning.

IF 3.7 Q1 CLINICAL NEUROLOGY Neuro-oncology advances Pub Date : 2024-12-12 eCollection Date: 2024-01-01 DOI:10.1093/noajnl/vdae190
Deep B Gandhi, Nastaran Khalili, Ariana M Familiar, Anurag Gottipati, Neda Khalili, Wenxin Tu, Shuvanjan Haldar, Hannah Anderson, Karthik Viswanathan, Phillip B Storm, Jeffrey B Ware, Adam Resnick, Arastoo Vossough, Ali Nabavizadeh, Anahita Fathi Kazerooni
{"title":"Automated pediatric brain tumor imaging assessment tool from CBTN: Enhancing suprasellar region inclusion and managing limited data with deep learning.","authors":"Deep B Gandhi, Nastaran Khalili, Ariana M Familiar, Anurag Gottipati, Neda Khalili, Wenxin Tu, Shuvanjan Haldar, Hannah Anderson, Karthik Viswanathan, Phillip B Storm, Jeffrey B Ware, Adam Resnick, Arastoo Vossough, Ali Nabavizadeh, Anahita Fathi Kazerooni","doi":"10.1093/noajnl/vdae190","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Fully automatic skull-stripping and tumor segmentation are crucial for monitoring pediatric brain tumors (PBT). Current methods, however, often lack generalizability, particularly for rare tumors in the sellar/suprasellar regions and when applied to real-world clinical data in limited data scenarios. To address these challenges, we propose AI-driven techniques for skull-stripping and tumor segmentation.</p><p><strong>Methods: </strong>Multi-institutional, multi-parametric MRI scans from 527 pediatric patients (<i>n</i> = 336 for skull-stripping, <i>n</i> = 489 for tumor segmentation) with various PBT histologies were processed to train separate nnU-Net-based deep learning models for skull-stripping, whole tumor (WT), and enhancing tumor (ET) segmentation. These models utilized single (T2/FLAIR) or multiple (T1-Gd and T2/FLAIR) input imaging sequences. Performance was evaluated using Dice scores, sensitivity, and 95% Hausdorff distances. Statistical comparisons included paired or unpaired 2-sample <i>t</i>-tests and Pearson's correlation coefficient based on Dice scores from different models and PBT histologies.</p><p><strong>Results: </strong>Dice scores for the skull-stripping models for whole brain and sellar/suprasellar region segmentation were 0.98 ± 0.01 (median 0.98) for both multi- and single-parametric models, with significant Pearson's correlation coefficient between single- and multi-parametric Dice scores (<i>r</i> > 0.80; <i>P</i> < .05 for all). Whole tumor Dice scores for single-input tumor segmentation models were 0.84 ± 0.17 (median = 0.90) for T2 and 0.82 ± 0.19 (median = 0.89) for FLAIR inputs. Enhancing tumor Dice scores were 0.65 ± 0.35 (median = 0.79) for T1-Gd+FLAIR and 0.64 ± 0.36 (median = 0.79) for T1-Gd+T2 inputs.</p><p><strong>Conclusion: </strong>Our skull-stripping models demonstrate excellent performance and include sellar/suprasellar regions, using single- or multi-parametric inputs. Additionally, our automated tumor segmentation models can reliably delineate whole lesions and ET regions, adapting to MRI sessions with missing sequences in limited data context.</p>","PeriodicalId":94157,"journal":{"name":"Neuro-oncology advances","volume":"6 1","pages":"vdae190"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11664259/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/noajnl/vdae190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Fully automatic skull-stripping and tumor segmentation are crucial for monitoring pediatric brain tumors (PBT). Current methods, however, often lack generalizability, particularly for rare tumors in the sellar/suprasellar regions and when applied to real-world clinical data in limited data scenarios. To address these challenges, we propose AI-driven techniques for skull-stripping and tumor segmentation.

Methods: Multi-institutional, multi-parametric MRI scans from 527 pediatric patients (n = 336 for skull-stripping, n = 489 for tumor segmentation) with various PBT histologies were processed to train separate nnU-Net-based deep learning models for skull-stripping, whole tumor (WT), and enhancing tumor (ET) segmentation. These models utilized single (T2/FLAIR) or multiple (T1-Gd and T2/FLAIR) input imaging sequences. Performance was evaluated using Dice scores, sensitivity, and 95% Hausdorff distances. Statistical comparisons included paired or unpaired 2-sample t-tests and Pearson's correlation coefficient based on Dice scores from different models and PBT histologies.

Results: Dice scores for the skull-stripping models for whole brain and sellar/suprasellar region segmentation were 0.98 ± 0.01 (median 0.98) for both multi- and single-parametric models, with significant Pearson's correlation coefficient between single- and multi-parametric Dice scores (r > 0.80; P < .05 for all). Whole tumor Dice scores for single-input tumor segmentation models were 0.84 ± 0.17 (median = 0.90) for T2 and 0.82 ± 0.19 (median = 0.89) for FLAIR inputs. Enhancing tumor Dice scores were 0.65 ± 0.35 (median = 0.79) for T1-Gd+FLAIR and 0.64 ± 0.36 (median = 0.79) for T1-Gd+T2 inputs.

Conclusion: Our skull-stripping models demonstrate excellent performance and include sellar/suprasellar regions, using single- or multi-parametric inputs. Additionally, our automated tumor segmentation models can reliably delineate whole lesions and ET regions, adapting to MRI sessions with missing sequences in limited data context.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
来自CBTN的儿童脑肿瘤自动成像评估工具:增强鞍上区域的包含和使用深度学习管理有限的数据。
背景:全自动颅骨剥离和肿瘤分割是监测儿童脑肿瘤(PBT)的关键。然而,目前的方法往往缺乏通用性,特别是对于鞍区/鞍上区域的罕见肿瘤,以及在有限的数据场景下应用于现实世界的临床数据时。为了解决这些挑战,我们提出了人工智能驱动的颅骨剥离和肿瘤分割技术。方法:对527例具有不同PBT组织的儿童患者(颅骨剥离组336例,肿瘤分割组489例)的多机构、多参数MRI扫描结果进行处理,分别训练基于nnu - net的颅骨剥离、全肿瘤(WT)和增强肿瘤(ET)分割的深度学习模型。这些模型使用单个(T2/FLAIR)或多个(T1-Gd和T2/FLAIR)输入成像序列。使用Dice分数、灵敏度和95% Hausdorff距离来评估性能。统计比较包括配对或非配对的2样本t检验和基于不同模型和PBT组织学的Dice评分的Pearson相关系数。结果:全脑颅骨剥离模型和鞍/鞍上区分割的Dice评分在多参数和单参数模型中均为0.98±0.01(中位数0.98),单参数和多参数Dice评分之间的Pearson相关系数显著(r > 0.80;结论:我们的颅骨剥离模型表现出优异的性能,包括鞍/鞍上区域,使用单参数或多参数输入。此外,我们的自动肿瘤分割模型可以可靠地描绘整个病变和ET区域,适应有限数据背景下缺失序列的MRI会话。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Erratum to: Evolutionary evidence precludes ELP1 as a high-penetrance pediatric cancer predisposition syndrome gene. A comparative study of preclinical and clinical molecular imaging response to EGFR inhibition using osimertinib in glioblastoma. Size matters: Early progression of melanoma brain metastases after treatment with immune checkpoint inhibitors. Distant brain failure after stereotactic radiosurgery for brain metastases in patients receiving novel systemic treatments. Longitudinal profiling of IDH-mutant astrocytomas reveals acquired RAS-MAPK pathway mutations associated with inferior survival.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1