Predicting the genetic component of gene expression using gene regulatory networks.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-11-23 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae180
Gutama Ibrahim Mohammad, Tom Michoel
{"title":"Predicting the genetic component of gene expression using gene regulatory networks.","authors":"Gutama Ibrahim Mohammad, Tom Michoel","doi":"10.1093/bioadv/vbae180","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Gene expression prediction plays a vital role in transcriptome-wide association studies. Traditional models rely on genetic variants in close genomic proximity to the gene of interest to predict the genetic component of gene expression. Here, we propose a novel approach incorporating distal genetic variants acting through gene regulatory networks, in line with the omnigenic model of complex traits.</p><p><strong>Results: </strong>Using causal and coexpression Bayesian networks reconstructed from genomic and transcriptomic data, inference of gene expression from genotypic data is achieved through a two-step process. Initially, the expression level of each gene is predicted using its local genetic variants. The residual differences between the observed and predicted expression levels are then modeled using the genotype information of parent and/or grandparent nodes in the network. The final predicted expression level is obtained by summing the predictions from both models, effectively incorporating both local and distal genetic influences. Using regularized regression techniques for parameter estimation, we found that gene regulatory network-based gene expression prediction outperformed the traditional approach on simulated data and real data from yeast and humans. This study provides important insights into the challenge of gene expression prediction for transcriptome-wide association studies.</p><p><strong>Availability and implementation: </strong>The code is available on Github at github.com/guutama/GRN-TI.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae180"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665636/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Gene expression prediction plays a vital role in transcriptome-wide association studies. Traditional models rely on genetic variants in close genomic proximity to the gene of interest to predict the genetic component of gene expression. Here, we propose a novel approach incorporating distal genetic variants acting through gene regulatory networks, in line with the omnigenic model of complex traits.

Results: Using causal and coexpression Bayesian networks reconstructed from genomic and transcriptomic data, inference of gene expression from genotypic data is achieved through a two-step process. Initially, the expression level of each gene is predicted using its local genetic variants. The residual differences between the observed and predicted expression levels are then modeled using the genotype information of parent and/or grandparent nodes in the network. The final predicted expression level is obtained by summing the predictions from both models, effectively incorporating both local and distal genetic influences. Using regularized regression techniques for parameter estimation, we found that gene regulatory network-based gene expression prediction outperformed the traditional approach on simulated data and real data from yeast and humans. This study provides important insights into the challenge of gene expression prediction for transcriptome-wide association studies.

Availability and implementation: The code is available on Github at github.com/guutama/GRN-TI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基因调控网络预测基因表达的遗传成分。
动机:基因表达预测在全转录组关联研究中起着至关重要的作用。传统的模型依赖于基因组中接近目标基因的遗传变异来预测基因表达的遗传成分。在这里,我们提出了一种新的方法,结合通过基因调控网络作用的远端遗传变异,符合复杂性状的全基因模型。结果:利用从基因组和转录组数据重建的因果和共表达贝叶斯网络,通过两步过程实现了从基因型数据推断基因表达。最初,每个基因的表达水平是通过其局部遗传变异来预测的。然后使用网络中亲代和/或祖父母节点的基因型信息对观察到的和预测的表达水平之间的剩余差异进行建模。最终的预测表达水平是通过将两种模型的预测相加得到的,有效地结合了局部和远端遗传影响。使用正则化回归技术进行参数估计,我们发现基于基因调控网络的基因表达预测在酵母和人类的模拟数据和真实数据上优于传统方法。这项研究为转录组关联研究的基因表达预测挑战提供了重要见解。可用性和实现:代码可在Github上获得github.com/guutama/GRN-TI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
Imputation for Lipidomics and Metabolomics (ImpLiMet): a web-based application for optimization and method selection for missing data imputation. estiMAge: development of a DNA methylation clock to estimate the methylation age of single cells. Integrative co-registration of elemental imaging and histopathology for enhanced spatial multimodal analysis of tissue sections through TRACE. Predicting CRISPR-Cas9 off-target effects in human primary cells using bidirectional LSTM with BERT embedding. Genal: a Python toolkit for genetic risk scoring and Mendelian randomization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1