A sensitive and selective amperometric determination of perfluorooctanesulfonic acid on Mo2Ti2AlC3 MXene precursor-modified electrode.

Chemosphere Pub Date : 2025-02-01 Epub Date: 2024-12-28 DOI:10.1016/j.chemosphere.2024.144012
Samaneh Rashtbari, Gholamreza Dehghan, Alireza Khataee, Simin Khataee, Yasin Orooji
{"title":"A sensitive and selective amperometric determination of perfluorooctanesulfonic acid on Mo<sub>2</sub>Ti<sub>2</sub>AlC<sub>3</sub> MXene precursor-modified electrode.","authors":"Samaneh Rashtbari, Gholamreza Dehghan, Alireza Khataee, Simin Khataee, Yasin Orooji","doi":"10.1016/j.chemosphere.2024.144012","DOIUrl":null,"url":null,"abstract":"<p><p>Various commercial and industrial products widely use highly toxic eight-carbon-chain perfluorooctanesulfonate (PFOS), posing a significant threat to the health of living organisms. In this study, the electrochemical detection of PFOS was achieved by developing a carbon paste electrode (CPE) using the Mo<sub>2</sub>Ti<sub>2</sub>AlC<sub>3</sub> MAX phase. Mo<sub>2</sub>Ti<sub>2</sub>AlC<sub>3</sub> was synthesized and directly used to construct the CPE. The electrochemical performance of the prepared sensor was tested using various electrochemical techniques, such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV), and amperometric titration. The developed electrochemical sensor exhibited two linear ranges from 0.001 to 0.09 μM and from 1.1 to 62.6 μM, with a detection limit of 0.04 nM. The sensor demonstrated high sensitivity, measuring 145.1 μA μM<sup>-1</sup> cm<sup>-2</sup>, and a response time of 5 s for PFOS quantification at a working potential of 0.3 V. Additionally, the sensor demonstrated outstanding resistance to typical interfering chemicals. The applicability and reliability of the developed sensor for PFOS determination were further tested in real samples, yielding recoveries in the range of 92.6-108.2%, with relative standard deviation (RSD) values between 1.8% and 3.7%. The Mo<sub>2</sub>Ti<sub>2</sub>AlC<sub>3</sub> MAX phase-based electrochemical sensor is simple, rapid, sensitive, and cost-effective, making it a promising approach for the quantification of PFOS in environmental water and soil samples.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"144012"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.144012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Various commercial and industrial products widely use highly toxic eight-carbon-chain perfluorooctanesulfonate (PFOS), posing a significant threat to the health of living organisms. In this study, the electrochemical detection of PFOS was achieved by developing a carbon paste electrode (CPE) using the Mo2Ti2AlC3 MAX phase. Mo2Ti2AlC3 was synthesized and directly used to construct the CPE. The electrochemical performance of the prepared sensor was tested using various electrochemical techniques, such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV), and amperometric titration. The developed electrochemical sensor exhibited two linear ranges from 0.001 to 0.09 μM and from 1.1 to 62.6 μM, with a detection limit of 0.04 nM. The sensor demonstrated high sensitivity, measuring 145.1 μA μM-1 cm-2, and a response time of 5 s for PFOS quantification at a working potential of 0.3 V. Additionally, the sensor demonstrated outstanding resistance to typical interfering chemicals. The applicability and reliability of the developed sensor for PFOS determination were further tested in real samples, yielding recoveries in the range of 92.6-108.2%, with relative standard deviation (RSD) values between 1.8% and 3.7%. The Mo2Ti2AlC3 MAX phase-based electrochemical sensor is simple, rapid, sensitive, and cost-effective, making it a promising approach for the quantification of PFOS in environmental water and soil samples.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mo2Ti2AlC3 MXene前驱体修饰电极上灵敏选择性安培法测定全氟辛磺酸。
各种商业和工业产品广泛使用剧毒的八碳链全氟辛烷磺酸(PFOS),对生物体的健康构成重大威胁。本研究采用Mo2Ti2AlC3 MAX相制备碳糊电极(CPE),实现了PFOS的电化学检测。合成了Mo2Ti2AlC3,并将其直接用于CPE的构建。利用循环伏安法(CV)、电化学阻抗谱法(EIS)、差分脉冲伏安法(DPV)和安培滴定法等电化学技术对所制备传感器的电化学性能进行了测试。该电化学传感器具有0.001 ~ 0.09 μM和1.1 ~ 62.6 μM的线性范围,检出限为0.04 nM。该传感器具有较高的灵敏度,测量值为145.1 μA μM-1 cm-2,工作电位为0.3 V时,响应时间为5秒。此外,该传感器对典型的干扰化学物质具有出色的抵抗力。在实际样品中进一步验证了该传感器的适用性和可靠性,回收率为92.6 ~ 107.7%,相对标准偏差(RSD)值为1.8% ~ 3.7%。基于Mo2Ti2AlC3 MAX相的电化学传感器具有简单、快速、灵敏和经济的优点,是一种很有前途的环境水和土壤样品中全氟辛烷磺酸的定量方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
graphite powder
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bacteriophages carry auxiliary metabolic genes related to energy, sulfur and phosphorus metabolism during a harmful algal bloom in a freshwater lake. Elucidating the phytotoxic endpoints of sub-chronic exposure to titanium dioxide nanoparticles in Endemic Persian Dracocephalum species. Retraction notice to "Simultaneous determination of hydrochlorothiazide, amlodipine, and telmisartan with spectrophotometric and HPLC green chemistry applications"[Chemosphere 303 (2022) 135074]. Phytoremediation evaluation of forever chemicals using hemp (Cannabis sativa L.): Pollen bioaccumulation and the risk to bees. Removal of sulfonamides by persulfate-based advanced oxidation: A mini review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1