Hongyu Liu , Zheng Qiu , Jun Shi , Jianhong Sun , Song Zhang
{"title":"Ground structure method-based stiffener layout topology optimization for horizontal machining center headstock cover plate","authors":"Hongyu Liu , Zheng Qiu , Jun Shi , Jianhong Sun , Song Zhang","doi":"10.1016/j.compstruc.2024.107633","DOIUrl":null,"url":null,"abstract":"<div><div>Structural dynamic performance of a machine tool greatly affects machining precision and productivity. One effective approach in improving the dynamic performance is by applying topology design optimization to the machine tool structure. A method based on the Ground Structure Method (GSM) is established to optimize the layout of stiffener structure. The GSM is employed for the construction of the stiffener. The optimal layout of the stiffeners is obtained by optimizing the thickness of each stiffener and penalizing intermediate thicknesses to ensure a clear layout. A topology optimization method based on maximizing the natural frequency is established to achieve maximum natural frequency design of stiffener plate. Finally, a few examples are presented to demonstrate the efficacy of the proposed method in enhancing the basic frequency of the structure. The method has been effectively utilized in the optimal design of the machine tool headstock cover plate. As a result, the lowest six natural frequencies of the headstock are increased by 17.83 %, 17.88 %, 5.99 %, 5.58 %, 19.52 % and 14,53 %, respectively. The new approach outlined in this paper serves as a valuable reference for optimizing the dynamic characteristics of machine tools.</div></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"307 ","pages":"Article 107633"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924003626","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Structural dynamic performance of a machine tool greatly affects machining precision and productivity. One effective approach in improving the dynamic performance is by applying topology design optimization to the machine tool structure. A method based on the Ground Structure Method (GSM) is established to optimize the layout of stiffener structure. The GSM is employed for the construction of the stiffener. The optimal layout of the stiffeners is obtained by optimizing the thickness of each stiffener and penalizing intermediate thicknesses to ensure a clear layout. A topology optimization method based on maximizing the natural frequency is established to achieve maximum natural frequency design of stiffener plate. Finally, a few examples are presented to demonstrate the efficacy of the proposed method in enhancing the basic frequency of the structure. The method has been effectively utilized in the optimal design of the machine tool headstock cover plate. As a result, the lowest six natural frequencies of the headstock are increased by 17.83 %, 17.88 %, 5.99 %, 5.58 %, 19.52 % and 14,53 %, respectively. The new approach outlined in this paper serves as a valuable reference for optimizing the dynamic characteristics of machine tools.
期刊介绍:
Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.