Design of double oxygen vacancy-rich Bi2O2S0.8F0.4/BiOBr S-scheme heterojunction via tuning band structure for CO2 photoreduction

IF 8.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materiomics Pub Date : 2024-12-24 DOI:10.1016/j.jmat.2024.100998
Xifeng Hou , Chenbin Ai , Songyu Yang , Jianjun Zhang , Yanfeng Zhang , Jingze Liu
{"title":"Design of double oxygen vacancy-rich Bi2O2S0.8F0.4/BiOBr S-scheme heterojunction via tuning band structure for CO2 photoreduction","authors":"Xifeng Hou ,&nbsp;Chenbin Ai ,&nbsp;Songyu Yang ,&nbsp;Jianjun Zhang ,&nbsp;Yanfeng Zhang ,&nbsp;Jingze Liu","doi":"10.1016/j.jmat.2024.100998","DOIUrl":null,"url":null,"abstract":"<div><div>S-scheme heterojunction has garnered significant interest owing to its distinctive band structure and interfacial interaction. In this work, nanosheets-like Bi<sub>2</sub>O<sub>2</sub>S<sub>0.8</sub>F<sub>0.4</sub>/BiOBr heterojunction photocatalyst with dual surface oxygen vacancies was synthesized by epitaxial growing method. The experiment results revealed that the evolution rate of CO from CO<sub>2</sub> photoreduction for optimal Bi<sub>2</sub>O<sub>2</sub>S<sub>0.8</sub>F<sub>0.4</sub>/BiOBr heterojunction was 219.3 μmol⸱g<sup>−1</sup>⸱h<sup>−1</sup>, being 9.8 times greater than that of pure BiOBr. The S-scheme band structure was shown to promote sunlight utilization, raise the reduction power of photogenerated electrons, and improve the separation and transfer of photogenerated charge carriers. Moreover, the presence of dual oxygen vacancies on the interfacial surface of Bi<sub>2</sub>O<sub>2</sub>S<sub>0.8</sub>F<sub>0.4</sub>/BiOBr heterojunction facilitates the adsorption and activation of CO<sub>2</sub> and H<sub>2</sub>O molecules. The work focuses on the combined impact of the S-scheme band structure and oxygen vacancy on the property of photocatalytic reduction of CO<sub>2</sub>. The study presents a straightforward strategy for the on-site creation of S-scheme heterojunction with defect.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 4","pages":"Article 100998"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352847824002375","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

S-scheme heterojunction has garnered significant interest owing to its distinctive band structure and interfacial interaction. In this work, nanosheets-like Bi2O2S0.8F0.4/BiOBr heterojunction photocatalyst with dual surface oxygen vacancies was synthesized by epitaxial growing method. The experiment results revealed that the evolution rate of CO from CO2 photoreduction for optimal Bi2O2S0.8F0.4/BiOBr heterojunction was 219.3 μmol⸱g−1⸱h−1, being 9.8 times greater than that of pure BiOBr. The S-scheme band structure was shown to promote sunlight utilization, raise the reduction power of photogenerated electrons, and improve the separation and transfer of photogenerated charge carriers. Moreover, the presence of dual oxygen vacancies on the interfacial surface of Bi2O2S0.8F0.4/BiOBr heterojunction facilitates the adsorption and activation of CO2 and H2O molecules. The work focuses on the combined impact of the S-scheme band structure and oxygen vacancy on the property of photocatalytic reduction of CO2. The study presents a straightforward strategy for the on-site creation of S-scheme heterojunction with defect.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用调谐能带结构设计富双氧空位Bi2O2S0.8F0.4/BiOBr S - scheme异质结用于CO2光还原
S - scheme异质结由于其独特的能带结构和界面相互作用而引起了人们的极大兴趣。本文采用外延生长法合成了具有双表面氧空位的Bi2O2S0.8F0.4 /BiOBr异质结光催化剂。实验结果表明,最优Bi2O2S0.8F0.4/BiOBr异质结中CO2光还原CO的演化速率为219.3 μmol⸱g-1⸱h-1,是纯BiOBr的9.8倍。S - scheme能带结构促进了光能的利用,提高了光生电子的还原能力,并改善了光生载流子的分离和转移。此外,Bi2O2S0.8F0.4/BiOBr异质结界面表面存在双氧空位,有利于CO2和H2O分子的吸附和活化。研究了S - scheme能带结构和氧空位对CO2光催化还原性能的综合影响。该研究提出了一种直接的方法,可以在现场制造S型异质结缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materiomics
Journal of Materiomics Materials Science-Metals and Alloys
CiteScore
14.30
自引率
6.40%
发文量
331
审稿时长
37 days
期刊介绍: The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.
期刊最新文献
Advances in Spinel-Type Electrocatalysts: Leveraging Ligand Field Theory to Elucidate Structure-Property Relationships Electronic state reconstruction enabling high thermoelectric performance in Ti doped Sb2Te3 flexible thin films Solar fuel photocatalysis Editor corrections to “Influence of electrode contact arrangements on polarisation-electric field measurements of ferroelectric ceramics: A case study of BaTiO3” [J Materiomics 11 (2025) 100939] Texture modulation of ferroelectric Hf0.5Zr0.5O2 thin films by engineering the polymorphism and texture of tungsten electrodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1