Marek Tyburec , Martin Doškář , Michael Somr , Martin Kružík , Jan Zeman
{"title":"Modular-topology optimization for additive manufacturing of reusable mechanisms","authors":"Marek Tyburec , Martin Doškář , Michael Somr , Martin Kružík , Jan Zeman","doi":"10.1016/j.compstruc.2024.107630","DOIUrl":null,"url":null,"abstract":"<div><div>Modular designs have gained popularity because they can generally address manufacturing efficiency, reusability, and sustainability concerns. Here, we contribute to the growing field by proposing a fully automatic design method for modules utilized in several products. Our manufacturing-aware procedure is composed of three consecutive steps: (i) free-material optimization for obtaining the optimal spatially distributed elasticity tensors, (ii) hierarchical clustering of the stiffness tensors directly into a given number of modules while allowing for their flipping, and (iii) single-scale topology optimization with manufacturing aspects to design the final topology of mechanically compatible modules. These aspects include connectivity constraints to ensure the integrity of all modules and the three-field projection to account for manufacturing inaccuracies. We illustrate the entire procedure with the design and fabrication of eight different reusable modules assembled into well-functioning modular inverter and gripper mechanisms. These mechanisms were 3D printed and subjected to mechanical testing using an in-house testing machine and digital image correlation. The experimental results show excellent agreement between the predicted and observed behavior and highlight the potential of the method for scalable additive manufacturing.</div></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"307 ","pages":"Article 107630"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924003596","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Modular designs have gained popularity because they can generally address manufacturing efficiency, reusability, and sustainability concerns. Here, we contribute to the growing field by proposing a fully automatic design method for modules utilized in several products. Our manufacturing-aware procedure is composed of three consecutive steps: (i) free-material optimization for obtaining the optimal spatially distributed elasticity tensors, (ii) hierarchical clustering of the stiffness tensors directly into a given number of modules while allowing for their flipping, and (iii) single-scale topology optimization with manufacturing aspects to design the final topology of mechanically compatible modules. These aspects include connectivity constraints to ensure the integrity of all modules and the three-field projection to account for manufacturing inaccuracies. We illustrate the entire procedure with the design and fabrication of eight different reusable modules assembled into well-functioning modular inverter and gripper mechanisms. These mechanisms were 3D printed and subjected to mechanical testing using an in-house testing machine and digital image correlation. The experimental results show excellent agreement between the predicted and observed behavior and highlight the potential of the method for scalable additive manufacturing.
期刊介绍:
Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.