Study on Thermal Conductivity of 0D/1D/2D Carbon Filler Reinforced Cement Composites with Phonon Physical Model

Chuang Feng, Huanxun Liu, Ziyan Hang, Yu Su, Xiaodong Xia, George J. Weng
{"title":"Study on Thermal Conductivity of 0D/1D/2D Carbon Filler Reinforced Cement Composites with Phonon Physical Model","authors":"Chuang Feng, Huanxun Liu, Ziyan Hang, Yu Su, Xiaodong Xia, George J. Weng","doi":"10.1016/j.cemconcomp.2024.105917","DOIUrl":null,"url":null,"abstract":"Thermal conductivity of cement composites is crucial for developing various sustainable engineering structures, creating an urgent need to elucidate the influencing factors and their associated mechanisms. Introducing various 0-, 1- and 2-dimensional carbon fillers into traditional cement composites with tailored thermal conductivity demonstrates great potential for practical engineering applications. However, limited studies have been done on the thermal conductivity of cement composites involving temperature- and pore size-dependent mechanisms. This work firstly attempts to develop a comprehensive micromechanical framework combining phonon thermal transport in carbon fillers and phonon boundary scattering in pores. The overall thermal conductivity of 0D-carbon black (CB), 1D-carbon nanotube (CNT) and 2D-graphene nanoplatelet (GNP) reinforced saturated/dry porous cement composites subject to temperature is predicted. The effects of porosity, saturation and the attributes of pores and the carbon fillers are considered. It is found that the order of the contribution of the carbon fillers to the improvement of the thermal conductivity is 2D-GNP>1D-CNT>0D-CB. The effective thermal conductivity of the porous cement composites tends to decrease as the temperature rises. Furthermore, as the aspect ratio of the carbon fillers increases, the thermal conductivity composites with 1D-CNTs and 2D-GNPs increases and decreases, respectively. The effective thermal conductivity of cement composites with random distribution of pore size is significantly higher than that with uniform distribution. The effective thermal conductivity of the saturated porous cement composites is less sensitive to the aspect ratio of the pores compared to their dry counterparts. This work provides guidelines for optimizing the thermal conductivity of porous cement composites for various potential engineering applications.","PeriodicalId":519419,"journal":{"name":"Cement and Concrete Composites","volume":"123 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cemconcomp.2024.105917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal conductivity of cement composites is crucial for developing various sustainable engineering structures, creating an urgent need to elucidate the influencing factors and their associated mechanisms. Introducing various 0-, 1- and 2-dimensional carbon fillers into traditional cement composites with tailored thermal conductivity demonstrates great potential for practical engineering applications. However, limited studies have been done on the thermal conductivity of cement composites involving temperature- and pore size-dependent mechanisms. This work firstly attempts to develop a comprehensive micromechanical framework combining phonon thermal transport in carbon fillers and phonon boundary scattering in pores. The overall thermal conductivity of 0D-carbon black (CB), 1D-carbon nanotube (CNT) and 2D-graphene nanoplatelet (GNP) reinforced saturated/dry porous cement composites subject to temperature is predicted. The effects of porosity, saturation and the attributes of pores and the carbon fillers are considered. It is found that the order of the contribution of the carbon fillers to the improvement of the thermal conductivity is 2D-GNP>1D-CNT>0D-CB. The effective thermal conductivity of the porous cement composites tends to decrease as the temperature rises. Furthermore, as the aspect ratio of the carbon fillers increases, the thermal conductivity composites with 1D-CNTs and 2D-GNPs increases and decreases, respectively. The effective thermal conductivity of cement composites with random distribution of pore size is significantly higher than that with uniform distribution. The effective thermal conductivity of the saturated porous cement composites is less sensitive to the aspect ratio of the pores compared to their dry counterparts. This work provides guidelines for optimizing the thermal conductivity of porous cement composites for various potential engineering applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insights into the synergistic action of initial hydration and subsequent carbonation of Portland cement Porous biochar for improving the CO2 uptake capacities and kinetics of concrete Microstructure transformation of MCM-41 modified cement paste subjected to thermal load and modelling of its pore size distribution New insights into the interaction between seawater and CO2-activated calcium silicate composites Mechanical Performance Enhancement of UHPC Via ITZ Improvement Using Graphene Oxide-Coated Steel Fibers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1