Advanced 3D Hamiltonian nodal position finite element method for nonlinear dynamic analysis of rotating solids

IF 4.4 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Structures Pub Date : 2025-01-15 DOI:10.1016/j.compstruc.2024.107634
Fuzhen Yao , Chaofeng Li , Zheng H. Zhu
{"title":"Advanced 3D Hamiltonian nodal position finite element method for nonlinear dynamic analysis of rotating solids","authors":"Fuzhen Yao ,&nbsp;Chaofeng Li ,&nbsp;Zheng H. Zhu","doi":"10.1016/j.compstruc.2024.107634","DOIUrl":null,"url":null,"abstract":"<div><div>This paper develops a novel 3D brick element by Nodal Position Finite Element Method (NPFEM) to effectively model rotating solids. It uses nodal positions instead of nodal displacements to formulate element’s strain and kinetic energies. This approach effectively avoids computational errors caused by spurious strains induced by large rigid-body rotations and can automatically account for stiffening effects arising from centrifugal forces. By directly solving for the positions of rotating elastic solids using Hamiltonian canonical equations, the new 3D NPFEM brick element allows elastic deformation to be efficiently and accurately extracted by subtracting the rigid-body motion from these positions. Additionally, the ability of the new 3D NPFEM brick element to model bending deformation is enhanced by directly introducing incompatible modes into the element shape functions. Numerical validation shows that the new 3D NPFEM brick element accurately models and analyzes the elastic deformation of rotating blades. It automatically captures nonlinear frequency responses of rotating solids without requiring special boundary and loading condition treatments commonly used in classic FEM. This advancement offers significant advantages by avoiding errors when modeling complex rotating solids or machines, thereby improving computational efficiency and accuracy.</div></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"307 ","pages":"Article 107634"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924003638","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops a novel 3D brick element by Nodal Position Finite Element Method (NPFEM) to effectively model rotating solids. It uses nodal positions instead of nodal displacements to formulate element’s strain and kinetic energies. This approach effectively avoids computational errors caused by spurious strains induced by large rigid-body rotations and can automatically account for stiffening effects arising from centrifugal forces. By directly solving for the positions of rotating elastic solids using Hamiltonian canonical equations, the new 3D NPFEM brick element allows elastic deformation to be efficiently and accurately extracted by subtracting the rigid-body motion from these positions. Additionally, the ability of the new 3D NPFEM brick element to model bending deformation is enhanced by directly introducing incompatible modes into the element shape functions. Numerical validation shows that the new 3D NPFEM brick element accurately models and analyzes the elastic deformation of rotating blades. It automatically captures nonlinear frequency responses of rotating solids without requiring special boundary and loading condition treatments commonly used in classic FEM. This advancement offers significant advantages by avoiding errors when modeling complex rotating solids or machines, thereby improving computational efficiency and accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
旋转固体非线性动力分析的先进三维哈密顿节点位置有限元方法
本文采用节点位置有限元法(NPFEM)开发了一种新的三维砖块单元,以有效地模拟旋转实体。它用节点位置代替节点位移来表示单元的应变和动能。该方法有效地避免了由于刚体大旋转引起的伪应变引起的计算误差,并能自动考虑离心力引起的加筋效应。通过使用哈密顿正则方程直接求解旋转弹性固体的位置,新的三维NPFEM砖单元可以通过从这些位置减去刚体运动来有效准确地提取弹性变形。此外,通过在单元形状函数中直接引入不相容模态,提高了新型三维NPFEM砖单元模拟弯曲变形的能力。数值验证表明,所建立的三维NPFEM砖单元能够准确地模拟和分析旋转叶片的弹性变形。它可以自动捕获旋转固体的非线性频率响应,而不需要经典有限元中常用的特殊边界和加载条件处理。这一进步提供了显著的优势,避免了建模复杂旋转固体或机器时的错误,从而提高了计算效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Structures
Computers & Structures 工程技术-工程:土木
CiteScore
8.80
自引率
6.40%
发文量
122
审稿时长
33 days
期刊介绍: Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.
期刊最新文献
An adaptive port technique for synthesising rotational components in component modal synthesis approaches RAGN-R: A multi-subject ensemble machine-learning method for estimating mechanical properties of advanced structural materials Phase-field modeling of brittle anisotropic fracture in polycrystalline materials under combined thermo-mechanical loadings A conformal optimization framework for lightweight design of complex components using stochastic lattice structures Time integration scheme for nonlinear structural dynamics, FAM, including structural vibration control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1