Dopant-Tuned Restructuring Kinetic for the Formation of Heterophase-Confined Metal-Nonmetal Diatomic Sites for Efficient Oxygen Evolution Reaction

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-12-24 DOI:10.1021/acscatal.4c03060
Xinyi Li, Feiyan Liu, Wenting Lu, Huafeng Fan, Meiling Xiao, Xiaoqiang Cui, Lu Li, Xiaoxin Zou, Weitao Zheng, Xiao Zhao
{"title":"Dopant-Tuned Restructuring Kinetic for the Formation of Heterophase-Confined Metal-Nonmetal Diatomic Sites for Efficient Oxygen Evolution Reaction","authors":"Xinyi Li, Feiyan Liu, Wenting Lu, Huafeng Fan, Meiling Xiao, Xiaoqiang Cui, Lu Li, Xiaoxin Zou, Weitao Zheng, Xiao Zhao","doi":"10.1021/acscatal.4c03060","DOIUrl":null,"url":null,"abstract":"Engineering the electronic structure and microenvironments of active sites is an effective strategy to enhance the oxygen evolution reaction (OER) kinetics. Meanwhile, most OER materials act only as precatalysts; therefore, understanding and modulation of restructuring kinetics is crucial for developing efficient OER active sites. Herein, a dopant-tuned restructuring kinetic for the generation of heterophase-confined metal-nonmetal diatomic sites has been achieved. Both operando spectra and theoretical evidence show that Zr dopants tune in situ restructuring kinetics and induce charge transfer between Ni and Se to generate Ni–Se diatomic sites that coordinate dynamically with oxygenated intermediates and reduce energy barriers significantly. Consequently, the dense Ni–Se diatomic sites display an overpotential of 224 mV vs reversible hydrogen electrode at 10 mAcm<sup>–2</sup> and stable operation over 500 h in alkaline conditions, one of the best performances among reported selenide-derived OER catalysts. Our results enable an in-depth understanding of dynamically restructured diatomic sites beyond the conventional single-metal sites and expand the strategies for engineering atomic/molecular-level active sites.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"107 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c03060","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Engineering the electronic structure and microenvironments of active sites is an effective strategy to enhance the oxygen evolution reaction (OER) kinetics. Meanwhile, most OER materials act only as precatalysts; therefore, understanding and modulation of restructuring kinetics is crucial for developing efficient OER active sites. Herein, a dopant-tuned restructuring kinetic for the generation of heterophase-confined metal-nonmetal diatomic sites has been achieved. Both operando spectra and theoretical evidence show that Zr dopants tune in situ restructuring kinetics and induce charge transfer between Ni and Se to generate Ni–Se diatomic sites that coordinate dynamically with oxygenated intermediates and reduce energy barriers significantly. Consequently, the dense Ni–Se diatomic sites display an overpotential of 224 mV vs reversible hydrogen electrode at 10 mAcm–2 and stable operation over 500 h in alkaline conditions, one of the best performances among reported selenide-derived OER catalysts. Our results enable an in-depth understanding of dynamically restructured diatomic sites beyond the conventional single-metal sites and expand the strategies for engineering atomic/molecular-level active sites.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Synergistic Dual-Atom Catalysts on Ceria for Enhanced CO Preferential Oxidation: Insights from High-Throughput First-Principles Microkinetics Elementary Steps, Site Requirements, and Support Effects in Methylcyclohexane Dehydrogenation Reactions on Dispersed Pd Nanoparticles Dopant-Tuned Restructuring Kinetic for the Formation of Heterophase-Confined Metal-Nonmetal Diatomic Sites for Efficient Oxygen Evolution Reaction Pincer-(NHC)Mn(I) Complex-Catalyzed Selective α-Alkylation of Ketones and Nitriles Using Unactivated Alkenyl Alcohols ABO4 as an Active Catalyst Structure for Direct Partial CH4 Oxidation as Identified through Screening of Supported Catalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1