Yu-Qin Liu, Lixin Tian, Mingjie Huang, Hong-Zhi Liu, Zhi-Yan Guo, Jian Ding, Wen-Qi Xia, Lang Teng, Han-Qing Yu, Wen-Wei Li
{"title":"Magnesium Oxide-Supported Single Atoms with Fine-Modulated Steric Location for Polymerization Transfer Removal of Water Pollutants","authors":"Yu-Qin Liu, Lixin Tian, Mingjie Huang, Hong-Zhi Liu, Zhi-Yan Guo, Jian Ding, Wen-Qi Xia, Lang Teng, Han-Qing Yu, Wen-Wei Li","doi":"10.1021/acs.est.4c06608","DOIUrl":null,"url":null,"abstract":"Organic pollutants removal via a polymerization transfer (PT) pathway based on the use of single-atom catalysts (SACs) promises efficient water purification with minimal energy/chemical inputs. However, the precise engineering of such catalytic systems toward PT decontamination is still challenging, and the conventional SACs are plagued by low structural stability of carbon material support. Here, we adopted magnesium oxide (MgO) as a structurally stable alternative for loading single copper (Cu) atoms to drive peroxymonosulfate-based Fenton-like reactions. Through fine-tuning the Cu atom steric location from lattice-embedding to surface-loading, the system exhibited a fundamental transition in the catalytic pathways toward the PT process and drastically improved decontamination efficiency. The catalytic pathway change was mainly ascribed to a downshifted <i>d</i>-band center of the Cu atoms. The optimized catalyst achieved complete, rapid removal of phenolic compounds from water via nearly 100% PT pathway, accompanied by high oxidant utilization efficiency surpassing most state-of-the-art SACs. Moreover, it showed excellent structural stability and environmental robustness and was successfully used for the treatment of lake water and industrial coking wastewater. The adaptability of the spatial engineering strategy to other MgO-supported single atoms, including Fe, Co, and Ni SACs, was also demonstrated. Our work lays a foundation for further advancing SACs-based advanced oxidation technologies toward sustainable water purification applications.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"57 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c06608","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Organic pollutants removal via a polymerization transfer (PT) pathway based on the use of single-atom catalysts (SACs) promises efficient water purification with minimal energy/chemical inputs. However, the precise engineering of such catalytic systems toward PT decontamination is still challenging, and the conventional SACs are plagued by low structural stability of carbon material support. Here, we adopted magnesium oxide (MgO) as a structurally stable alternative for loading single copper (Cu) atoms to drive peroxymonosulfate-based Fenton-like reactions. Through fine-tuning the Cu atom steric location from lattice-embedding to surface-loading, the system exhibited a fundamental transition in the catalytic pathways toward the PT process and drastically improved decontamination efficiency. The catalytic pathway change was mainly ascribed to a downshifted d-band center of the Cu atoms. The optimized catalyst achieved complete, rapid removal of phenolic compounds from water via nearly 100% PT pathway, accompanied by high oxidant utilization efficiency surpassing most state-of-the-art SACs. Moreover, it showed excellent structural stability and environmental robustness and was successfully used for the treatment of lake water and industrial coking wastewater. The adaptability of the spatial engineering strategy to other MgO-supported single atoms, including Fe, Co, and Ni SACs, was also demonstrated. Our work lays a foundation for further advancing SACs-based advanced oxidation technologies toward sustainable water purification applications.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.