Polyethylene microplastic exposure adversely affects oocyte quality in human and mouse

IF 10.3 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environment International Pub Date : 2024-12-25 DOI:10.1016/j.envint.2024.109236
Qiaoling Wang, Fengli Chi, Yingdong Liu, Qiurong Chang, Siyu Chen, Pengcheng Kong, Wanli Yang, Wenqiang Liu, Xiaoming Teng, Yan Zhao, Yi Guo
{"title":"Polyethylene microplastic exposure adversely affects oocyte quality in human and mouse","authors":"Qiaoling Wang, Fengli Chi, Yingdong Liu, Qiurong Chang, Siyu Chen, Pengcheng Kong, Wanli Yang, Wenqiang Liu, Xiaoming Teng, Yan Zhao, Yi Guo","doi":"10.1016/j.envint.2024.109236","DOIUrl":null,"url":null,"abstract":"Microplastics (MPs) are pervasive environmental contaminants, resulting in unavoidable human exposure. This study identified MPs in follicular fluid and investigated the specific MPs and mechanisms that adversely affect oocytes. MPs in the follicular fluid of 44 infertile women undergoing assisted reproductive technology were measured using Raman microspectroscopy. Differential metabolites in follicular fluid were analyzed <em>via</em> untargeted metabolomics. Female mice were exposed to polyethylene (PE) to validate human findings. MPs, particularly PE, exhibited the highest detection rate (86.4 %) in human follicular fluid and showed a negative correlation with fertilization rates (r = -0.407, P = 0.007). Elevated PE levels altered metabolites primarily involved in metabolic pathways, ferroptosis, and ovarian steroidogenesis. In mice, PE exposure significantly reduced the number of retrieved oocytes (31.5 <em>vs.</em> 36.3, P &lt; 0.05) and fertilization rate (70.8 % <em>vs.</em> 85.2 %, P &lt; 0.001), while increasing the proportion of poor-quality oocytes (28.2 % <em>vs.</em> 16.5 %, P &lt; 0.001) and reactive oxygen species (ROS) production compared to controls. RNA sequencing indicated significant upregulation of inflammation-related genes (Il10ra, Il1a, Il33, Tnfaip8l2, and Tnfrsf1b) in the PE-exposed group. In conclusion, PE exposure impairs oocyte quality possibly by disrupting follicular fluid metabolism, elevating inflammation-related gene expression, and increasing ROS production in oocytes.","PeriodicalId":308,"journal":{"name":"Environment International","volume":"5 1","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment International","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envint.2024.109236","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Microplastics (MPs) are pervasive environmental contaminants, resulting in unavoidable human exposure. This study identified MPs in follicular fluid and investigated the specific MPs and mechanisms that adversely affect oocytes. MPs in the follicular fluid of 44 infertile women undergoing assisted reproductive technology were measured using Raman microspectroscopy. Differential metabolites in follicular fluid were analyzed via untargeted metabolomics. Female mice were exposed to polyethylene (PE) to validate human findings. MPs, particularly PE, exhibited the highest detection rate (86.4 %) in human follicular fluid and showed a negative correlation with fertilization rates (r = -0.407, P = 0.007). Elevated PE levels altered metabolites primarily involved in metabolic pathways, ferroptosis, and ovarian steroidogenesis. In mice, PE exposure significantly reduced the number of retrieved oocytes (31.5 vs. 36.3, P < 0.05) and fertilization rate (70.8 % vs. 85.2 %, P < 0.001), while increasing the proportion of poor-quality oocytes (28.2 % vs. 16.5 %, P < 0.001) and reactive oxygen species (ROS) production compared to controls. RNA sequencing indicated significant upregulation of inflammation-related genes (Il10ra, Il1a, Il33, Tnfaip8l2, and Tnfrsf1b) in the PE-exposed group. In conclusion, PE exposure impairs oocyte quality possibly by disrupting follicular fluid metabolism, elevating inflammation-related gene expression, and increasing ROS production in oocytes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environment International
Environment International 环境科学-环境科学
CiteScore
21.90
自引率
3.40%
发文量
734
审稿时长
2.8 months
期刊介绍: Environmental Health publishes manuscripts focusing on critical aspects of environmental and occupational medicine, including studies in toxicology and epidemiology, to illuminate the human health implications of exposure to environmental hazards. The journal adopts an open-access model and practices open peer review. It caters to scientists and practitioners across all environmental science domains, directly or indirectly impacting human health and well-being. With a commitment to enhancing the prevention of environmentally-related health risks, Environmental Health serves as a public health journal for the community and scientists engaged in matters of public health significance concerning the environment.
期刊最新文献
The mechanism-specific injury mortality burden associated with heatwave in China in a warming world Assessing the role of selenium in Minamata disease through reanalysis of historical samples Polyethylene microplastic exposure adversely affects oocyte quality in human and mouse Contaminant-degrading bacteria are super carriers of antibiotic resistance genes in municipal landfills: A metagenomics-based study Long-term exposure to air pollution and lower respiratory infections in a large population-based adult cohort in Catalonia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1