{"title":"RNA Order Regulates Its Interactions with Zwitterionic Lipid Bilayers","authors":"Akhil Pratap Singh, Janak Prabhu, Stefano Vanni","doi":"10.1021/acs.nanolett.4c04153","DOIUrl":null,"url":null,"abstract":"RNA–lipid interactions directly influence RNA activity, which plays a crucial role in the development of new applications in medicine and biotechnology. However, while specific preferential behaviors between RNA and lipid bilayers have been identified experimentally, their molecular origin remains unexplored. Here we use molecular dynamics simulations to investigate the interaction between RNA and membranes composed of zwitterionic lipids at the atomistic level. Our data reproduce and rationalize previous experimental observations, including that short-chain RNAs rich in guanine have a higher affinity for gel-phase membranes compared to RNA sequences rich in other nucleotides and that RNA prefers gel-phase membranes to fluid bilayers. Our simulations reveal that RNA order is a key molecular determinant of RNA–zwitterionic phospholipid interactions. Our data provide a wealth of information at the atomic level that will help accelerate research on RNA–lipid assemblies for task-specific applications such as designing lipid-based nanocarriers for RNA delivery.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"14 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04153","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
RNA–lipid interactions directly influence RNA activity, which plays a crucial role in the development of new applications in medicine and biotechnology. However, while specific preferential behaviors between RNA and lipid bilayers have been identified experimentally, their molecular origin remains unexplored. Here we use molecular dynamics simulations to investigate the interaction between RNA and membranes composed of zwitterionic lipids at the atomistic level. Our data reproduce and rationalize previous experimental observations, including that short-chain RNAs rich in guanine have a higher affinity for gel-phase membranes compared to RNA sequences rich in other nucleotides and that RNA prefers gel-phase membranes to fluid bilayers. Our simulations reveal that RNA order is a key molecular determinant of RNA–zwitterionic phospholipid interactions. Our data provide a wealth of information at the atomic level that will help accelerate research on RNA–lipid assemblies for task-specific applications such as designing lipid-based nanocarriers for RNA delivery.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.