Impact of Guanidinium Hydrochloride on the Shapes of Prothymosin-α and α-Synuclein Is Dramatically Different.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry Biochemistry Pub Date : 2024-12-24 DOI:10.1021/acs.biochem.4c00654
Zhenxing Liu, D Thirumalai
{"title":"Impact of Guanidinium Hydrochloride on the Shapes of Prothymosin-α and α-Synuclein Is Dramatically Different.","authors":"Zhenxing Liu, D Thirumalai","doi":"10.1021/acs.biochem.4c00654","DOIUrl":null,"url":null,"abstract":"<p><p>The effects of guanidinium hydrochloride (GdmCl) on two intrinsically disordered proteins (IDPs) are investigated using simulations of the self-organized polymer-IDP (SOP-IDP) model. The impact of GdmCl is taken into account using the molecular transfer model (MTM). We show that due to the dramatic reduction in the stiffness of the highly charged Prothymosin-α (ProTα) with increasing concentration of GdmCl ([GdmCl]), the radius of gyration (<i>R</i><sub>g</sub>) decreases sharply until about 1.0 M. Above 1.0 M, ProTα expands, caused by the swelling effect of GdmCl. In contrast, <i>R</i><sub>g</sub> of α-Synuclein (αSyn) swells as continuously as [GdmCl] increases, with most of the expansion occurring at concentrations less than 0.2 M. Strikingly, the amplitude of the small-angle X-ray scattering (SAXS) profiles for ProTα increases until [GdmCl] ≈ 1.0 M and decreases beyond 1.0 M. The [GdmCl]-dependent SAXS profiles for αSyn, which has a pronounced bump at small wave vector (<i>q</i> ∼ 0.5 nm<sup>-1</sup>) at low [GdmCl] (≤0.2 M), monotonically decrease at all values of [GdmCl]. The contrasting behavior predicted by the combination of MTM and SOP-IDP simulations may be qualitatively understood by modeling ProTα as a strongly charged polyelectrolyte with nearly uniform density of charges along the chain contour and αSyn as a nearly neutral polymer, except near the C-terminus, where the uncompensated negatively charged residues are located. The precise predictions for the SAXS profiles as a function of [GdmCl] can be readily tested.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00654","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The effects of guanidinium hydrochloride (GdmCl) on two intrinsically disordered proteins (IDPs) are investigated using simulations of the self-organized polymer-IDP (SOP-IDP) model. The impact of GdmCl is taken into account using the molecular transfer model (MTM). We show that due to the dramatic reduction in the stiffness of the highly charged Prothymosin-α (ProTα) with increasing concentration of GdmCl ([GdmCl]), the radius of gyration (Rg) decreases sharply until about 1.0 M. Above 1.0 M, ProTα expands, caused by the swelling effect of GdmCl. In contrast, Rg of α-Synuclein (αSyn) swells as continuously as [GdmCl] increases, with most of the expansion occurring at concentrations less than 0.2 M. Strikingly, the amplitude of the small-angle X-ray scattering (SAXS) profiles for ProTα increases until [GdmCl] ≈ 1.0 M and decreases beyond 1.0 M. The [GdmCl]-dependent SAXS profiles for αSyn, which has a pronounced bump at small wave vector (q ∼ 0.5 nm-1) at low [GdmCl] (≤0.2 M), monotonically decrease at all values of [GdmCl]. The contrasting behavior predicted by the combination of MTM and SOP-IDP simulations may be qualitatively understood by modeling ProTα as a strongly charged polyelectrolyte with nearly uniform density of charges along the chain contour and αSyn as a nearly neutral polymer, except near the C-terminus, where the uncompensated negatively charged residues are located. The precise predictions for the SAXS profiles as a function of [GdmCl] can be readily tested.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
期刊最新文献
Re-evaluation of the C-Glucosyltransferase IroB Illuminates Its Ability to C-Glucosylate Non-native Triscatecholate Enterobactin Mimics. Impact of Guanidinium Hydrochloride on the Shapes of Prothymosin-α and α-Synuclein Is Dramatically Different. QM/MM Calculations on Excited-State Proton Transfer and Photoisomerization of a Red Fluorescent Protein mKeima with Large Stokes Shift. Disruption of Molecular Interactions between the G3BP1 Stress Granule Host Protein and the Nucleocapsid (NTD-N) Protein Impedes SARS-CoV-2 Virus Replication. Insights into the Activation and Self-Association of Arrestin-1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1