Loss of SUR2 alters the composition of ceramides and shortens chronological lifespan of Saccharomyces cerevisiae.

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. Molecular and cell biology of lipids Pub Date : 2024-12-22 DOI:10.1016/j.bbalip.2024.159591
Zhitao Deng, Qianqian Wang, Rongbin Ding, Weiwei Nie, Xiaoyan Chen, Yu Chen, Yanlu Wang, Jingjing Duan, Zhenying Hu
{"title":"Loss of SUR2 alters the composition of ceramides and shortens chronological lifespan of Saccharomyces cerevisiae.","authors":"Zhitao Deng, Qianqian Wang, Rongbin Ding, Weiwei Nie, Xiaoyan Chen, Yu Chen, Yanlu Wang, Jingjing Duan, Zhenying Hu","doi":"10.1016/j.bbalip.2024.159591","DOIUrl":null,"url":null,"abstract":"<p><p>Sphingolipids are crucial components of cell membranes and serve as important signaling molecules. Ceramide, as the central hub of sphingolipid metabolism, plays a significant role in various biological processes, including the cell cycle, apoptosis, and cellular aging. Alterations in sphingolipid metabolism are implicated in cellular aging, however, the specific sphingolipid components and intrinsic mechanisms that mediate this process remain largely uncharacterized. In this study, we established a targeted sphingolipidomics approach and employed LC-MS/MS to quantitatively analyze changes in ceramide levels during chronological aging and in sur2Δ strains, aiming to elucidate the role of ceramides in regulating chronological lifespan. Our study revealed that in Saccharomyces cerevisiae, the C4 hydroxylase Sur2 and its product, phytoceramide, increase during chronological aging. While the loss of SUR2 function leads to a near-complete loss of phytoceramides and an accumulation of dihydroceramides, resulting in a significant reduction of total ceramide content to about half of that in wild-type cells. This ceramide profile alteration impairs both mitochondrial morphology and function, ultimately shortening the chronological lifespan. The knockout of SIT4 restores mitochondrial morphology and function, and rescues the chronological lifespan of SUR2-deficient yeast. Our findings highlight the critical role of dihydroceramide and phytoceramide in chronological aging in yeast and suggest that an imbalance between these two metabolites may trigger downstream ceramide signaling pathways. These insights could help elucidate potential mechanisms through which ceramide imbalance contributes to disease development in higher organisms.</p>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":" ","pages":"159591"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbalip.2024.159591","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sphingolipids are crucial components of cell membranes and serve as important signaling molecules. Ceramide, as the central hub of sphingolipid metabolism, plays a significant role in various biological processes, including the cell cycle, apoptosis, and cellular aging. Alterations in sphingolipid metabolism are implicated in cellular aging, however, the specific sphingolipid components and intrinsic mechanisms that mediate this process remain largely uncharacterized. In this study, we established a targeted sphingolipidomics approach and employed LC-MS/MS to quantitatively analyze changes in ceramide levels during chronological aging and in sur2Δ strains, aiming to elucidate the role of ceramides in regulating chronological lifespan. Our study revealed that in Saccharomyces cerevisiae, the C4 hydroxylase Sur2 and its product, phytoceramide, increase during chronological aging. While the loss of SUR2 function leads to a near-complete loss of phytoceramides and an accumulation of dihydroceramides, resulting in a significant reduction of total ceramide content to about half of that in wild-type cells. This ceramide profile alteration impairs both mitochondrial morphology and function, ultimately shortening the chronological lifespan. The knockout of SIT4 restores mitochondrial morphology and function, and rescues the chronological lifespan of SUR2-deficient yeast. Our findings highlight the critical role of dihydroceramide and phytoceramide in chronological aging in yeast and suggest that an imbalance between these two metabolites may trigger downstream ceramide signaling pathways. These insights could help elucidate potential mechanisms through which ceramide imbalance contributes to disease development in higher organisms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.00
自引率
2.10%
发文量
109
审稿时长
53 days
期刊介绍: BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.
期刊最新文献
Unraveling the potential contribution of DHHC2 in cancer biology via untargeted metabolomics. The interplay of transcriptional regulator SREBP1 with AMPK promotes lipid biosynthesis in Mucor circinelloides WJ11. Loss of SUR2 alters the composition of ceramides and shortens chronological lifespan of Saccharomyces cerevisiae. Hippo pathway activation causes multiple lipid derangements in a murine model of cardiomyopathy. Expression, purification and characterization of a dual function α-dioxygenase/peroxidase from Mycolicibacterium smegmatis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1