Carbon dioxide shapes parasite-host interactions in a human-infective nematode.

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Biology Pub Date : 2024-12-18 DOI:10.1016/j.cub.2024.11.036
Navonil Banerjee, Spencer S Gang, Michelle L Castelletto, Breanna Walsh, Felicitas Ruiz, Elissa A Hallem
{"title":"Carbon dioxide shapes parasite-host interactions in a human-infective nematode.","authors":"Navonil Banerjee, Spencer S Gang, Michelle L Castelletto, Breanna Walsh, Felicitas Ruiz, Elissa A Hallem","doi":"10.1016/j.cub.2024.11.036","DOIUrl":null,"url":null,"abstract":"<p><p>Skin-penetrating nematodes infect nearly one billion people worldwide. The developmentally arrested infective larvae (iL3s) seek out hosts, invade hosts via skin penetration, and resume development inside the host in a process called activation. Activated infective larvae (iL3as) traverse the host body, ending up as parasitic adults in the small intestine. Skin-penetrating nematodes respond to many chemosensory cues, but how chemosensation contributes to host seeking and intra-host navigation-two crucial steps of the parasite-host interaction-remains poorly understood. Here, we investigate the role of carbon dioxide (CO<sub>2</sub>) in promoting host seeking and intra-host navigation in the human-infective threadworm Strongyloides stercoralis. We show that S. stercoralis exhibits life-stage-specific behavioral preferences for CO<sub>2</sub>: iL3s are repelled, non-infective larvae and adults are neutral, and iL3as are attracted. CO<sub>2</sub> repulsion in iL3s may prime them for host seeking by stimulating dispersal from host feces, while CO<sub>2</sub> attraction in iL3as may direct worms toward high-CO<sub>2</sub> areas of the body, such as the lungs and intestine. We also identify sensory neurons that detect CO<sub>2</sub>; these neurons display CO<sub>2</sub>-evoked calcium activity, promote behavioral responses to CO<sub>2</sub>, and express the receptor guanylate cyclase Ss-GCY-9. Finally, we develop an approach for generating stable knockout lines in S. stercoralis and use this approach to show that Ss-gcy-9 is required for CO<sub>2</sub>-evoked behavioral responses in both iL3s and iL3as. Our results highlight chemosensory mechanisms that shape the interaction between parasitic nematodes and their human hosts and may aid in the design of novel anthelmintics that target the CO<sub>2</sub>-sensing pathway.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.11.036","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Skin-penetrating nematodes infect nearly one billion people worldwide. The developmentally arrested infective larvae (iL3s) seek out hosts, invade hosts via skin penetration, and resume development inside the host in a process called activation. Activated infective larvae (iL3as) traverse the host body, ending up as parasitic adults in the small intestine. Skin-penetrating nematodes respond to many chemosensory cues, but how chemosensation contributes to host seeking and intra-host navigation-two crucial steps of the parasite-host interaction-remains poorly understood. Here, we investigate the role of carbon dioxide (CO2) in promoting host seeking and intra-host navigation in the human-infective threadworm Strongyloides stercoralis. We show that S. stercoralis exhibits life-stage-specific behavioral preferences for CO2: iL3s are repelled, non-infective larvae and adults are neutral, and iL3as are attracted. CO2 repulsion in iL3s may prime them for host seeking by stimulating dispersal from host feces, while CO2 attraction in iL3as may direct worms toward high-CO2 areas of the body, such as the lungs and intestine. We also identify sensory neurons that detect CO2; these neurons display CO2-evoked calcium activity, promote behavioral responses to CO2, and express the receptor guanylate cyclase Ss-GCY-9. Finally, we develop an approach for generating stable knockout lines in S. stercoralis and use this approach to show that Ss-gcy-9 is required for CO2-evoked behavioral responses in both iL3s and iL3as. Our results highlight chemosensory mechanisms that shape the interaction between parasitic nematodes and their human hosts and may aid in the design of novel anthelmintics that target the CO2-sensing pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
期刊最新文献
An intrinsic hierarchical, retinotopic organization of visual pulvinar connectivity in the human neonate. Days-old zebrafish rapidly learn to recognize threatening agents through noradrenergic and forebrain circuits. A recurrent neural circuit in Drosophila temporally sharpens visual inputs. The Fat-Dachsous planar polarity pathway competes with hinge contraction to orient polarized cell behaviors during Drosophila wing morphogenesis. Carbon dioxide shapes parasite-host interactions in a human-infective nematode.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1