A novel network with enhanced edge information for left atrium segmentation from LGE-MRI.

IF 3.2 3区 医学 Q2 PHYSIOLOGY Frontiers in Physiology Pub Date : 2024-12-10 eCollection Date: 2024-01-01 DOI:10.3389/fphys.2024.1478347
Ze Zhang, Zhen Wang, Xiqian Wang, Kuanquan Wang, Yongfeng Yuan, Qince Li
{"title":"A novel network with enhanced edge information for left atrium segmentation from LGE-MRI.","authors":"Ze Zhang, Zhen Wang, Xiqian Wang, Kuanquan Wang, Yongfeng Yuan, Qince Li","doi":"10.3389/fphys.2024.1478347","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Automatic segmentation of the left atrium (LA) constitutes a crucial pre-processing step in evaluating heart structure and function during clinical interventions, such as image-guided radiofrequency ablation of atrial fibrillation. Despite prior research on LA segmentation, the low contrast in medical images exacerbates the challenge of distinguishing various tissues, rendering accurate boundary delineation of the target area formidable. Moreover, class imbalance due to the small target size further complicates segmentation.</p><p><strong>Methods: </strong>This study aims to devise an architecture that augments edge information for LA segmentation from late gadolinium enhancement magnetic resonance imaging. To intensify edge information within image features, this study introduces an Edge Information Enhancement Module (EIEM) to the foundational network. The design of EIEM is grounded in exploring edge details within target region features learned from images. Additionally, it incorporates a Spatially Weighted Cross-Entropy loss function tailored for EIEM, introducing constraints on different regions based on the importance of pixels to edge segmentation, while also mitigating class imbalance through weighted treatment of positive and negative samples.</p><p><strong>Results: </strong>The proposed method is validated on the 2018 Atrial Segmentation Challenge dataset. Compared with other state-of-the-art algorithms, the proposed algorithm demonstrated a significant improvement with an average symmetric surface distance of 0.684 mm and achieved a commendable Dice coefficient of 0.924, implicating the effectiveness of enhancing edge information.</p><p><strong>Discussion: </strong>The method offers a practical framework for precise LA localization and segmentation, particularly strengthening the algorithm's effectiveness in improving segmentation outcomes for irregular protrusions and discrete multiple targets. Additionally, the generalizability of our model was evaluated on the heart dataset from the Medical Segmentation Decathlon (MSD) challenge, confirming its robustness across different clinical scenarios involving LA segmentation.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":"15 ","pages":"1478347"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666555/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphys.2024.1478347","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Automatic segmentation of the left atrium (LA) constitutes a crucial pre-processing step in evaluating heart structure and function during clinical interventions, such as image-guided radiofrequency ablation of atrial fibrillation. Despite prior research on LA segmentation, the low contrast in medical images exacerbates the challenge of distinguishing various tissues, rendering accurate boundary delineation of the target area formidable. Moreover, class imbalance due to the small target size further complicates segmentation.

Methods: This study aims to devise an architecture that augments edge information for LA segmentation from late gadolinium enhancement magnetic resonance imaging. To intensify edge information within image features, this study introduces an Edge Information Enhancement Module (EIEM) to the foundational network. The design of EIEM is grounded in exploring edge details within target region features learned from images. Additionally, it incorporates a Spatially Weighted Cross-Entropy loss function tailored for EIEM, introducing constraints on different regions based on the importance of pixels to edge segmentation, while also mitigating class imbalance through weighted treatment of positive and negative samples.

Results: The proposed method is validated on the 2018 Atrial Segmentation Challenge dataset. Compared with other state-of-the-art algorithms, the proposed algorithm demonstrated a significant improvement with an average symmetric surface distance of 0.684 mm and achieved a commendable Dice coefficient of 0.924, implicating the effectiveness of enhancing edge information.

Discussion: The method offers a practical framework for precise LA localization and segmentation, particularly strengthening the algorithm's effectiveness in improving segmentation outcomes for irregular protrusions and discrete multiple targets. Additionally, the generalizability of our model was evaluated on the heart dataset from the Medical Segmentation Decathlon (MSD) challenge, confirming its robustness across different clinical scenarios involving LA segmentation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
5.00%
发文量
2608
审稿时长
14 weeks
期刊介绍: Frontiers in Physiology is a leading journal in its field, publishing rigorously peer-reviewed research on the physiology of living systems, from the subcellular and molecular domains to the intact organism, and its interaction with the environment. Field Chief Editor George E. Billman at the Ohio State University Columbus is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
期刊最新文献
A novel network with enhanced edge information for left atrium segmentation from LGE-MRI. Editorial: Insights in renal and epithelial physiology: 2023. Editorial: Mechanotransduction in vascular development and disease. The expression of glycolysis-related proteins in urine significantly increases after running. Molecular pathways involved in the control of contractile and metabolic properties of skeletal muscle fibers as potential therapeutic targets for Duchenne muscular dystrophy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1