Ze Zhang, Zhen Wang, Xiqian Wang, Kuanquan Wang, Yongfeng Yuan, Qince Li
{"title":"A novel network with enhanced edge information for left atrium segmentation from LGE-MRI.","authors":"Ze Zhang, Zhen Wang, Xiqian Wang, Kuanquan Wang, Yongfeng Yuan, Qince Li","doi":"10.3389/fphys.2024.1478347","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Automatic segmentation of the left atrium (LA) constitutes a crucial pre-processing step in evaluating heart structure and function during clinical interventions, such as image-guided radiofrequency ablation of atrial fibrillation. Despite prior research on LA segmentation, the low contrast in medical images exacerbates the challenge of distinguishing various tissues, rendering accurate boundary delineation of the target area formidable. Moreover, class imbalance due to the small target size further complicates segmentation.</p><p><strong>Methods: </strong>This study aims to devise an architecture that augments edge information for LA segmentation from late gadolinium enhancement magnetic resonance imaging. To intensify edge information within image features, this study introduces an Edge Information Enhancement Module (EIEM) to the foundational network. The design of EIEM is grounded in exploring edge details within target region features learned from images. Additionally, it incorporates a Spatially Weighted Cross-Entropy loss function tailored for EIEM, introducing constraints on different regions based on the importance of pixels to edge segmentation, while also mitigating class imbalance through weighted treatment of positive and negative samples.</p><p><strong>Results: </strong>The proposed method is validated on the 2018 Atrial Segmentation Challenge dataset. Compared with other state-of-the-art algorithms, the proposed algorithm demonstrated a significant improvement with an average symmetric surface distance of 0.684 mm and achieved a commendable Dice coefficient of 0.924, implicating the effectiveness of enhancing edge information.</p><p><strong>Discussion: </strong>The method offers a practical framework for precise LA localization and segmentation, particularly strengthening the algorithm's effectiveness in improving segmentation outcomes for irregular protrusions and discrete multiple targets. Additionally, the generalizability of our model was evaluated on the heart dataset from the Medical Segmentation Decathlon (MSD) challenge, confirming its robustness across different clinical scenarios involving LA segmentation.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":"15 ","pages":"1478347"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666555/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphys.2024.1478347","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Automatic segmentation of the left atrium (LA) constitutes a crucial pre-processing step in evaluating heart structure and function during clinical interventions, such as image-guided radiofrequency ablation of atrial fibrillation. Despite prior research on LA segmentation, the low contrast in medical images exacerbates the challenge of distinguishing various tissues, rendering accurate boundary delineation of the target area formidable. Moreover, class imbalance due to the small target size further complicates segmentation.
Methods: This study aims to devise an architecture that augments edge information for LA segmentation from late gadolinium enhancement magnetic resonance imaging. To intensify edge information within image features, this study introduces an Edge Information Enhancement Module (EIEM) to the foundational network. The design of EIEM is grounded in exploring edge details within target region features learned from images. Additionally, it incorporates a Spatially Weighted Cross-Entropy loss function tailored for EIEM, introducing constraints on different regions based on the importance of pixels to edge segmentation, while also mitigating class imbalance through weighted treatment of positive and negative samples.
Results: The proposed method is validated on the 2018 Atrial Segmentation Challenge dataset. Compared with other state-of-the-art algorithms, the proposed algorithm demonstrated a significant improvement with an average symmetric surface distance of 0.684 mm and achieved a commendable Dice coefficient of 0.924, implicating the effectiveness of enhancing edge information.
Discussion: The method offers a practical framework for precise LA localization and segmentation, particularly strengthening the algorithm's effectiveness in improving segmentation outcomes for irregular protrusions and discrete multiple targets. Additionally, the generalizability of our model was evaluated on the heart dataset from the Medical Segmentation Decathlon (MSD) challenge, confirming its robustness across different clinical scenarios involving LA segmentation.
期刊介绍:
Frontiers in Physiology is a leading journal in its field, publishing rigorously peer-reviewed research on the physiology of living systems, from the subcellular and molecular domains to the intact organism, and its interaction with the environment. Field Chief Editor George E. Billman at the Ohio State University Columbus is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.