Signal transducer of IAA related gene expression induces transporters of hyperaccumulator Arabis alpina for Pb accumulation.

IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES International Journal of Phytoremediation Pub Date : 2024-12-25 DOI:10.1080/15226514.2024.2443575
Zuran Li, Yumeng Liao, Mei Liu, Xinran Liang, Li Qin, Jixiu Wang, Yanqun Zu
{"title":"Signal transducer of IAA related gene expression induces transporters of hyperaccumulator <i>Arabis alpina</i> for Pb accumulation.","authors":"Zuran Li, Yumeng Liao, Mei Liu, Xinran Liang, Li Qin, Jixiu Wang, Yanqun Zu","doi":"10.1080/15226514.2024.2443575","DOIUrl":null,"url":null,"abstract":"<p><p>Lead (Pb) pollution in soil affects growth of plants. Plants' endogenous hormones play an important role in resistance to Pb of plant. In order to explore the hormone-based mechanisms of Pb accumulationin in hyperaccumulator <i>Arabis alpina</i>, a pot experiment was conducted to analyze the contents of endogenous hormones (auxin, gibberellin, abscisic acid, and cytokinin) and related genes expressions, and Pb contents of <i>A. alpina</i>, as well as the transporter (cation exchangers (CAX), heavy metal ATPases (HMA), and ATP-binding cassette (ABC)) concentrations under foliar spraying of indoleacetic acid (IAA). The results showed that the soluble components (vacuoles) Pb contents under 300 mg kg<sup>-1</sup> Pb<sup>2+</sup> treatment in shoots and roots increased by 238.8% and 896.3%, respectively, compared to 100 mg kg<sup>-1</sup> Pb<sup>2+</sup> treatment. The content of endogenous hormones in leaves and roots increased under increasing Pb-treatment concentrations. Compared with the control (0 mg kg<sup>-1</sup> Pb<sup>2+</sup> treatment), the content of auxin in roots and leaves under the 100 mg kg<sup>-1</sup> Pb treatment increased by 176.2% and 585.3%, respectively. The auxin content in xylem saps under the 100 and 300 mg kg<sup>-1</sup> Pb treatments increased by 283.1% and 100.3%, respectively. The gene expression related to auxin transport was up-regulated. The expression of three genes related to the auxin-repressed 12.5 kDa protein and the auxin-responsive GH3 (Gretchen Hagen 3) family were down-regulated. Under foliar spraying of IAA, the Pb content in leaves increased by 29.81%, and the Pb content in the symplast sap was higher than that without IAA spraying treatment. The concentrations of CAX and HMA in the roots of <i>A. alpina</i> increased by 9.6% and 8.8%, respectively, with foliar spraying treatment with IAA, while the ABC concentration decreased by 21.9%. In general, the transport and accumulation of Pb is related to the IAA content and the gene expression of <i>AaGDCST</i>, a signal transducer for inducing increased concentrations of the transporter CAX and HMA in the roots of <i>A. alpina</i>. Pb transport <i>via</i> the symplast pathway under IAA application. Regarding the Pb hyperaccumulation of <i>A. alpina</i>, gene <i>AaGDCST</i> has the potential to be utilized as a candidate gene.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-10"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2443575","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Lead (Pb) pollution in soil affects growth of plants. Plants' endogenous hormones play an important role in resistance to Pb of plant. In order to explore the hormone-based mechanisms of Pb accumulationin in hyperaccumulator Arabis alpina, a pot experiment was conducted to analyze the contents of endogenous hormones (auxin, gibberellin, abscisic acid, and cytokinin) and related genes expressions, and Pb contents of A. alpina, as well as the transporter (cation exchangers (CAX), heavy metal ATPases (HMA), and ATP-binding cassette (ABC)) concentrations under foliar spraying of indoleacetic acid (IAA). The results showed that the soluble components (vacuoles) Pb contents under 300 mg kg-1 Pb2+ treatment in shoots and roots increased by 238.8% and 896.3%, respectively, compared to 100 mg kg-1 Pb2+ treatment. The content of endogenous hormones in leaves and roots increased under increasing Pb-treatment concentrations. Compared with the control (0 mg kg-1 Pb2+ treatment), the content of auxin in roots and leaves under the 100 mg kg-1 Pb treatment increased by 176.2% and 585.3%, respectively. The auxin content in xylem saps under the 100 and 300 mg kg-1 Pb treatments increased by 283.1% and 100.3%, respectively. The gene expression related to auxin transport was up-regulated. The expression of three genes related to the auxin-repressed 12.5 kDa protein and the auxin-responsive GH3 (Gretchen Hagen 3) family were down-regulated. Under foliar spraying of IAA, the Pb content in leaves increased by 29.81%, and the Pb content in the symplast sap was higher than that without IAA spraying treatment. The concentrations of CAX and HMA in the roots of A. alpina increased by 9.6% and 8.8%, respectively, with foliar spraying treatment with IAA, while the ABC concentration decreased by 21.9%. In general, the transport and accumulation of Pb is related to the IAA content and the gene expression of AaGDCST, a signal transducer for inducing increased concentrations of the transporter CAX and HMA in the roots of A. alpina. Pb transport via the symplast pathway under IAA application. Regarding the Pb hyperaccumulation of A. alpina, gene AaGDCST has the potential to be utilized as a candidate gene.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Phytoremediation
International Journal of Phytoremediation 环境科学-环境科学
CiteScore
7.60
自引率
5.40%
发文量
145
审稿时长
3.4 months
期刊介绍: The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.
期刊最新文献
Signal transducer of IAA related gene expression induces transporters of hyperaccumulator Arabis alpina for Pb accumulation. Flowing-water remediation simulation experiments of lead-contaminated soil using UCB technology. Multidimensional role of selenium nanoparticles to promote growth and resilience dynamics of Phaseolus vulgaris against sodium fluoride stress. An interplay of salt and Ni stress on contrasting tomato (Solanum lycopersicum L.) genotypes: a physiological and biochemical insight. Potential reuse of greywater for irrigation of tomato (Solanum lycopersicum) plants and its effect on plants growth and soil.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1