Shuo Sun, Jin Li, Xiaoxun Li, Xianyu Zhao, Kun Li, Liang Chen
{"title":"Dynamic 3D metasurface holography via cascaded polymer dispersed liquid crystal.","authors":"Shuo Sun, Jin Li, Xiaoxun Li, Xianyu Zhao, Kun Li, Liang Chen","doi":"10.1038/s41378-024-00855-6","DOIUrl":null,"url":null,"abstract":"<p><p>Metasurface with natural static structure limits the development of dynamic metasurface holographic display with rapid response and broadband. Currently, liquid crystal (LC) was integrated onto the metasurface to convert the passive metasuface into an active one. But, majority of LC-assisted active metasurfaces often exhibit trade-offs among degree of freedom (DoF, typically less than 2), information capacity, response speed, and crosstalk. Herein, at first time, we experimentally demonstrate a cascaded device with polymer dispersed liquid crystal (PDLC) and broadband metasurface, enabling dynamic three-dimensional (3D) holographic display with ultra-high contrast, rapid response and continuous regulation. The PDLC droplets enable modulation of scattering state of incident light by high-speed dynamic control system for electric scanning. Based on self-addressing, rapid response and multi-channel PDLC-metasurface device, the dynamic holographic effect of monochrome holographic images switching and color-changing holographic display with broadband, low-crosstalk and high contrast, has been achieved. Our approach offers a novel perspective on dynamic metasurface.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"203"},"PeriodicalIF":7.3000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00855-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Metasurface with natural static structure limits the development of dynamic metasurface holographic display with rapid response and broadband. Currently, liquid crystal (LC) was integrated onto the metasurface to convert the passive metasuface into an active one. But, majority of LC-assisted active metasurfaces often exhibit trade-offs among degree of freedom (DoF, typically less than 2), information capacity, response speed, and crosstalk. Herein, at first time, we experimentally demonstrate a cascaded device with polymer dispersed liquid crystal (PDLC) and broadband metasurface, enabling dynamic three-dimensional (3D) holographic display with ultra-high contrast, rapid response and continuous regulation. The PDLC droplets enable modulation of scattering state of incident light by high-speed dynamic control system for electric scanning. Based on self-addressing, rapid response and multi-channel PDLC-metasurface device, the dynamic holographic effect of monochrome holographic images switching and color-changing holographic display with broadband, low-crosstalk and high contrast, has been achieved. Our approach offers a novel perspective on dynamic metasurface.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.