{"title":"Inorganic ligand capped quantum dot light-emitting diodes: status and perspective.","authors":"Tianxu Zhang, Xuan Yang, Bin Xie, Xiaobing Luo","doi":"10.1088/1361-6528/ada2f1","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum dots (QDs) have shown great application potential in a variety of optoelectronic devices due to their unique optoelectronic properties, especially playing a key role in the development of quantum dot light-emitting diodes (QLEDs). Inorganic ligands, including metal or non-metal chalcogenides, oxoanions, halides, and metal cations, play crucial roles in the synthesis, stabilization, and functionalization of QDs. Compared to long-chain organic ligands, inorganic ligands are shorter and possess higher electron mobility, which facilitates their application in high-performance QLEDs. This review explores the mechanisms of ligand exchange, classifies the types of inorganic ligands, and discusses their impact on the properties of QDs. Special attention is given to the latest research developments in inorganic ligand QDs for LEDs and their prospective applications in optoelectronics. This review highlights the versatility and efficacy of inorganic ligands, showcasing their potential to revolutionize QLED technology for future high-resolution displays and efficient optoelectronic devices.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ada2f1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum dots (QDs) have shown great application potential in a variety of optoelectronic devices due to their unique optoelectronic properties, especially playing a key role in the development of quantum dot light-emitting diodes (QLEDs). Inorganic ligands, including metal or non-metal chalcogenides, oxoanions, halides, and metal cations, play crucial roles in the synthesis, stabilization, and functionalization of QDs. Compared to long-chain organic ligands, inorganic ligands are shorter and possess higher electron mobility, which facilitates their application in high-performance QLEDs. This review explores the mechanisms of ligand exchange, classifies the types of inorganic ligands, and discusses their impact on the properties of QDs. Special attention is given to the latest research developments in inorganic ligand QDs for LEDs and their prospective applications in optoelectronics. This review highlights the versatility and efficacy of inorganic ligands, showcasing their potential to revolutionize QLED technology for future high-resolution displays and efficient optoelectronic devices.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.